A Brief Introduction to Engineering Computation with MATLAB

By:
Serhat Beyenir

A Brief Introduction to Engineering Computation with MATLAB

By:
Serhat Beyenir

Online:
< http://cnx.org/content/col11371/1.11/ >

This selection and arrangement of content as a collection is copyrighted by Serhat Beyenir. It is licensed under the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
Collection structure revised: November 17, 2015
PDF generated: November 22, 2016
For copyright and attribution information for the modules contained in this collection, see p. 156.

Table of Contents

Acknowledgements 1
Preface 3
Study Guide 5
1 Introduction
1.1 What is MATLAB? 7
1.2 Problem Set 22
Solutions 23
2 Getting Started
2.1 Essentials 25
2.2 Problem Set 42
Solutions 44
3 Graphics
3.1 Plotting in MATLAB 49
3.2 Problem Set 67
Solutions 71
4 Introductory Programming
4.1 Writing Scripts to Solve Problems 81
4.2 Problem Set 94
Solutions 97
5 Interpolation
5.1 Interpolation 105
5.2 Problem Set 108
Solutions 111
6 Numerical Integration
6.1 Computing the Area Under a Curve 115
6.2 Problem Set 123
Solutions 125
7 Regression Analysis
7.1 Regression Analysis 129
7.2 Problem Set 138
Solutions 140
8 Publishing with MATLAB
8.1 Generating Reports with MATLAB 143
8.2 Problem Set 148
Solutions 149
Index 154
Attributions 156

Acknowledgements ${ }^{1}$

I would like to express my appreciation to all of my students in the Power and Process Engineering program between the academic years 2011-12 and 2015-16 for their feedback and understanding that this book is a work in-progress.

Special thanks go to those who supported the book along the way:

- Dr. David Porter ${ }^{2}$, the founder of BCIT OER Group in 2015 who constantly provides me with the latent energy to continue working on this book,
- Mr. Alex Podut with whom I co-taught MATLAB in 2015. His input was very valuable,
- Dr. Sanja Boskovic who promoted this book at management levels in 2012,
- Mr. Sergiy Yatlo who gave feedback to the first iterations of the book in early 2011.

[^0]
Preface ${ }^{3}$

In my tenth year at the Institute, I dedicate this book to the BCIT community.

The primary purpose of writing a book and distributing it free-of-charge is to extend my gratitude to BCIT 4. I am particularly thrilled to do it with this textbook because it is a product of many learning opportunities BCIT has offered me over a period of several years. What follows is a brief background on how this book came to be.

My post-secondary teaching career began on 22 January 2001 at the Pacific Marine Training Campus of BCIT when I logged on to a Unix workstation to instruct in the Propulsion Plant Simulator. That has been a major milestone in many ways in my professional life. While learning inner workings of Unix operating system (OS), I also made a discovery and that discovery profoundly changed my view on how I thought the world operated. The discovery was the GNU/Linux OS and open source software (OSS) movement through several books, most notably Just for Fun: The Story of an Accidental Revolutionary ${ }^{5}$ and The Cathedral and the Bazaar ${ }^{6}$. I was convinced that the collective power of connected individuals around the world and the global infrastructure of the Internet had the potential to change the ways the world functioned.

In the last 10 years, BCIT has allowed me to study various subjects through its Professional Development (PD) programs for which I am very grateful. I learned a great deal in PD courses and in one of the recent ones, I had two déjà vu moments similar to my discovery of OSS movement. The first one occurred when I began reading The Wealth of Networks ${ }^{7}$ and the second one when I found about Connexions ${ }^{8}$. The former was a confirmation of my 10-year old discovery and the latter is what I am using to write this book. Connexions is a web-based curricular content authoring and publishing technology that I believe has a growing potential for writing and distributing free-of-charge learning materials.

Thus, motivation for this book stems from the notions that were generated by the OSS movement. The book was written to pay a small token of appreciation to BCIT and I hope it will be a contribution to the open educational resources repository.

Serhat Beyenir
North Vancouver, B. C.
25 October 2011

[^1]Available for free at Connexions < http://cnx.org/content/col11371/1.11>

Study Guide ${ }^{\text {b }}$

MATLAB, a sub-course of Computer Technology 1 and this text are specifically designed for students with no programming experience. However, students are expected to be proficient in First Year Mathematics and Sciences and access to good reference books are highly recommended. I also assume that students have a working knowledge of the Mac OS X or Microsoft Windows operating systems.

The strategic goal of the course and book is to provide learners with an appreciation for the role computation plays in solving engineering problems. The MATLAB specific skills that I would like students to acquire are as follows:

- Write scripts to solve engineering problems including interpolation, numerical integration and regression analysis,
- Plot graphs to visualize, analyze and present numerical data,
- Publish reports.

The best way to learn about engineering computation is to actually do it. We will therefore solve many engineering problems mainly using a recent version of MATLAB in this book. Since the primary focus is engineering computation, we will concentrate on the mathematical solutions and, to a limited extent, the graphical user interface (GUI) features of MATLAB.

Learning a new skill, especially a computer program, can be an overwhelming experience. To make the best of this process, students are encouraged to observe the following guidelines that have proven to work well:

- Plan to study 2 hours outside of class for every hour inside of class,
- Practice, practice, practice: As the old saying goes, practice makes one perfect or perhaps we should modify that statement: Good practice makes one perfect,
- Buddy system: Study with a classmate. Helping one another drastically improves your understanding of the material. Particularly, students are advised to work the problem sets in this fashion,
- Muddy points: Make a note of muddy points as they may occur during lectures and email your notes to me. I will address those issues at the beginning of the next class,
- Open book exam: Do not try to memorize commands, functions or their syntax but learn where and how to find that information. Through many exercises and problem sets you will have solved by the end of the course, most computational routines will become second nature to you. The exam is open book, so keep your learning materials and m-files well organized.

[^2]
Chapter 1

Introduction

1.1 What is MATLAB? ${ }^{1}$

MATLAB stands for MATrix LABoratory (see wikipedia ${ }^{2}$) and is a commercial software application written by The MathWorks, Inc. ${ }^{3}$ When you first use MATLAB, you can think of it as a glorified calculator allowing you to perform engineering calculations and plot data. However, MATLAB is more than an advanced scientific calculator, for example MATLAB's sophisticated numerical computation environment also allows

[^3]us to analyze data, simulate engineering systems, document and share our code with others.

1.1.1 Why Use MATLAB?

MATLAB has become a defacto standard in many fields of engineering and science. Even a casual exploration of MATLAB should unveil its computational power however a closer look at MATLAB's graphics and data analysis tools as well as interaction with other applications and programing languages prove why MATLAB is a very strong application for technical computing.

The standard MATLAB installation includes graphics features to visualize engineering and scientific data in $2-\mathrm{D}$ and $3-\mathrm{D}$ plots. We can interactivity build graphs and generate MATLAB command output that can be saved for use in the future. The saved-instructions can be called again with different data set to build new plots. The plots created with MATLAB can be exported in various file formats (e.g. .jpg, .png) to embed in Microsoft Word documents or PowerPoint slideshows.

MATLAB also contains interactive tools to explore and analyze data. For example, we can visualize data with one of the many plotting routines, zoom in to plots to take measurements, perform statistical calculations, fit curves to data and evaluate the obtained expression for a desired value.

MATLAB interacts with other applications (e.g. Microsoft Excel) and can be called from C code, C ++ or Fortran programming language.

1.1.2 Running MATLAB

To use MATLAB, it must be installed on your computer and you can start it just like you start any application on your system or you must have access to a network where it is available.

BCIT holds a Total Student Headcount (TSH) license for Mathworks software and this allows students to install MathWorks software on their personally-owned computers.

Matlab download and installation instructions for BCIT students ${ }^{4}$
For your install, choose the latest version available and install MATLAB, Curve Fitting Toolbox and Symbolic Math Toolbox.

In addition, MATLAB Online provides access to MATLAB from your web browser. Just log in to use MATLAB:

Access MATLAB From Your Web Browser ${ }^{5}$

1.1.3 The MATLAB Desktop

When you start the MATLAB program, it displays the MATLAB desktop. The desktop is a set of tools (graphical user interfaces or GUIs) for managing files, variables, and applications associated with MATLAB. The first time you start MATLAB, the desktop appears with the default layout, as shown in the following illustration.

[^4]

Figure 1.1: The MATLAB Desktop.

1.1.3.1 Command Window

The Command Window is where we execute MATLAB commands. We enter statements at the Command Window prompt. The prompt can be any one of the following:

- Trial> indicates that the Command Window is in normal mode and the MATLAB license will expire after the trial period ends.
- EDU \gg indicates that the Command Window is in normal mode, in MATLAB Student Version.
- $>$ indicates that the Command Window is in normal mode.

Figure 1.2: The Command Window.

1.1.3.2 Command History

The Command History is a log of the commands we have executed in the command window.

Figure 1.3: The Command History.

1.1.3.3 Workspace

The workspace consists of a set of variables stored in memory during a MATLAB session. To open the Workspace browser, select Desktop > Workspace in the MATLAB desktop, or type

```
> workspace
```

at the Command Window prompt.

Workspace (a)		
Name \triangle	Value	Min
\#x	5	5

Figure 1.4: Workspace.

1.1.3.4 Current Folder

The Current Folder is like the Finder in Mac OS X or Windows Explorer in Windows operating systems and allows us to browse through the files and folders. The Current Folder also displays details about files in your current directory and within the hierarchy of the folders it contains.

Figure 1.5: Current Folder.

Current Folder	(${ }^{\text {c }}$
- Name \triangle	
\# \$ \$RECYCLE.BIN	\triangle
\pm IB. .TemporaryItems	
\# [13 2008	
(1] builds	
\# Desktop	
(1] Documents	
(] LabVIEW Data	
\pm M MATLAB	
\# MyCourses	
1. PersonalFiles	
[] public_html	-
\# slprj	
\#] temp	
] untitled_grt_rtw	
\# U UserProfile	
\pm userprofiler2	\checkmark

Figure 1.6: Current Folder docked on the desktop.

1.1.3.5 Tool Strip

The tool strip contains global tabs, Home, Plots and Apps. Contextual tabs become available when you need them.

Figure 1.7: Tool Strip.

Figure 1.8: Tabs.

The plots tab allows us to plot various types of graphs quickly and easily.

HOME	PLOTS	APPS								Search Documentation ρ			
$\boxplus y$			bar area					loglog comet			*	O Reuse FigureNew Figure	
SELECTION		PLOTS : y										OPTIONS	

Figure 1.9: The plots tab.

The apps tab gives quick access to interactive applications within MATLAB environment.

Figure 1.10: The apps tab.

Layout button allows us to change the desktop layout or go back to the default configuration.

Figure 1.11: Layout button.

1.1.3.6 Toolbar

The MATLAB toolbar provides on-screen buttons to access frequently used features such as, copy, paste, undo and redo.

Figure 1.12: Toolbar.

1.1.3.7 Keyboard shortcuts

MATLAB provides keyboard shortcuts for viewing a history of commands and listing contextual help.

1. The up arrow key,
2. The tab key,
3. The semicolon symbol.

1.1.3.7.1 The Up Arrow Key

Suppose we want to enter the following equation:
$>y=\sin (45)$
But we mistakenly entered
$y=\operatorname{sine}(45)$
MATLAB returns the following prompt:

```
??? Undefined function or method 'sine' for input arguments of type 'double'.
```

Instead of retyping the equation, press the up arrow key, the mistakenly entered line is displayed. Using the left arrow key, move the cursor to the misspelled letter. Make the correction and press Return or Enter to execute the command.

Pressing the up arrow key repeatedly recalls the previously entered commands. Likewise, typing the first characters of previously entered line and pressing the up arrow key displays the full command line. To execute that line, simply press the Return or Enter key.

1.1.3.7.2 The Tab Key

Suppose you forgot how to enter the square root command. Begin typing $y=s q$ in the command prompt:

$$
\gg y=s q
$$

Then press the tab key and scroll down to sqrt. Select it and press Return or Enter key.
$>y=$ sqrt

1.1.3.7.3 The Semicolon Symbol

The semicolon symbol at the end of a line suppresses the screen output. This is useful when you want to keep your command window clean.

Type the following entry and press the Return key:
$\gg y=2+2$
The following output is displayed:
$\mathrm{y}=$
4
Now, press the up arrow key to recall our initial entry
$>y=2+2$
And insert a semicolon as follows:
$>y=2+2 ;$
No numerical result is displayed however MATLAB stores the value of y in the memory. We can recall the value y by simply typing y and pressing Return.

1.1.4 MATLAB Help

MATLAB comes with three forms of online help: help, doc and demos.

1.1.4.1 Help

Typing help in the Command Window lists all primary help topics. You can display a topic by clicking on the link.

```
help
```


Figure 1.13: Help.

Or if you know the command or function you need help with, you can type help followed by the command or function. For example to learn about clc command, type help clc at the command prompt:

```
help clc
```


Figure 1.14: The output of \gg help clc command.

Also try the following command: \gg help clear

Figure 1.15: The output of \gg help clear command.

To learn about sine function, type help sin at the command prompt:

```
help sin
```


1.1.4.2 Doc

Obviously, to use help effectively, you need to know what you are looking for. Often times, especially when you first start learning an application, it is usually difficult to ask the right questions. In the case of MATLAB, doc command is generally better than help. If you type doc in the command prompt, MATLAB opens a browser from where you can obtain help easier:

```
doc
```


Figure 1.16: Built-in MATLAB Documentation.

Like using help sin, try typing doc sin in the command prompt:

```
doc sin
```


1.1.4.3 Demos

You can learn more about MATLAB through demos by typing demo in the command prompt, a list of links to demos will open in Help Browser. Demos and online seminars are available at product demos and online seminars ${ }^{6}$.

\gg demo

[^5]

Figure 1.17: Built-in MATLAB Demos.

1.1.5 Useful Commands and Functions

For a detailed explanation and examples for each of the following type 'help function' (without quotes) at the MATLAB prompt.

Command/Function	Meaning
clc	Clear Command Window
clear	Remove items from workspace
who, whos	List variables in workspace
workspace	Display Workspace browser
cd	Change working directory
pwd	Display current directory
computer	Identify information about computer on which MATLAB is running
ver	Display version information for MathWorks products
quit	Terminate MATLAB
exit	Terminate MATLAB (same as quit)

Table 1.1: Useful commands and functions

1.1.6 Summary of Key Points

1. MATLAB is a popular technical computing application and MathWorks offers a trial version of MATLAB on their website,
2. The MATLAB Desktop consists of Command Window, Command History, Workspace, Current Folder and Start Button,
3. The up/down arrow keys, the tab key and the semicolon are convenient tools to use the Command Window,
4. MATLAB features an online help, doc and demo,
5. Various commands and functions make MATLAB experience easier, for example, clc, clear and exit.

1.2 Problem Set ${ }^{7}$

Exercise 1.2.1

(Solution on p. 23.)
Learn about the following terms using help command:

1. workspace
2. plot
3. clear
4. format
5. roots
[^6]
Solutions to Exercises in Chapter 1

Solution to Exercise 1.2.1 (p. 22)
1.
$>$ help workspace
WORKSPACE Open Workspace browser to manage workspace
WORKSPACE Opens the Workspace browser with a view of the variables in the current Workspace. Displayed variables may be viewed, manipulated, saved, and cleared.

See also whos, openvar, save.
Reference page in Help browser doc workspace
\gg
2.

```
    help plot
    PLOT Linear plot.
    PLOT(X,Y) plots vector Y versus vector X. If X or Y is a matrix,
    then the vector is plotted versus the rows or columns of the matrix,
    whichever line up. If X is a scalar and Y is a vector, disconnected
    line objects are created and plotted as discrete points vertically at
    X. ..........
```

3.

$>$ help clear
CLEAR Clear variables and functions from memory.
CLEAR removes all variables from the workspace.
CLEAR VARIABLES does the same thing.
CLEAR GLOBAL removes all global variables.
CLEAR FUNCTIONS removes all compiled M- and MEX-functions.
CLEAR ALL removes all variables, globals, functions and MEX links.
CLEAR ALL at the command prompt also removes the Java packages import list.
......
4.

```
    help format
FORMAT Set output format.
    FORMAT with no inputs sets the output format to the default appropriate
    for the class of the variable. For float variables, the default is
```

FORMAT SHORT.
.
5.
$>$ help roots
ROOTS Find polynomial roots.
ROOTS(C) computes the roots of the polynomial whose coefficients
are the elements of the vector C . If C has $\mathrm{N}+1$ components, the polynomial is $C(1) * \mathrm{X}^{\wedge} \mathrm{N}+\ldots+\mathrm{C}(\mathrm{N}) * \mathrm{X}+\mathrm{C}(\mathrm{N}+1)$.

Chapter 2

Getting Started

2.1 Essentials ${ }^{1}$

Learning a new skill, especially a computer program in this case, can be overwhelming. However, if we build on what we already know, the process can be handled rather effectively. In the preceding chapter we learned about MATLAB Graphical User Interface (GUI) and how to get help. Knowing the GUI, we will use basic math skills in MATLAB to solve linear equations and find roots of polynomials in this chapter.

[^7]
2.1.1 Basic Computation

2.1.1.1 Mathematical Operators

The evaluation of expressions is accomplished with arithmetic operators as we use them in scientific calculators. Note the addtional operators shown in the table below:

Operator	Name	Description
+	Plus	Addition
-	Minus	Subtraction
$*$	Asterisk	Multiplication
$/$	Forward Slash	Division
\backslash	Back Slash	Left Matrix Division
\wedge	Caret	Power
.*	Dot Asterisk	Array multiplication (element-wise)
.$/$	Dot Slash	Right array divide (element-wise)
.\backslash	Dot Back Slash	Left array divide (element-wise)
.$^{\wedge}$	Dot Caret	Array power (element-wise)

Table 2.1: Operators

NOTE: The backslash operator is used to solve linear systems of equations, see Section 2.1.5 (Linear Equations).

IMPORTANT: Matrix is a rectangular array of numbers and formed by rows and columns. For example $A=\left(\begin{array}{cccc}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16\end{array}\right)$. In this example A consists of 4 rows and 4 columns and therefore is a 4 x 4 matrix. (see Wikipedia ${ }^{2}$).

IMPORTANT: Row vector is a special matrix that contains only one row. In other words, a row vector is a 1 xn matrix where n is the number of elements in the row vector. $B=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\right)$

Important: Column vector is also a special matrix. As the term implies, it contains only one column. A column vector is an nx1 matrix where n is the number of elements in the column vector.
$C=\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ 5\end{array}\right)$

[^8]NOTE: Array operations refer to element-wise calculations on the arrays, for example if x is an a by b matrix and y is a c by d matrix then $x . * y$ can be performed only if $a=c$ and $b=d$. Consider the following example, x consists of 2 rows and 3 columns and therefore it is a 2 x 3 matrix. Likewise, y has 2 rows and 3 columns and an array operation is possible. $x=\left(\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)$ and $y=$ $\left(\begin{array}{ccc}10 & 20 & 30 \\ 40 & 50 & 60\end{array}\right)$ then $\mathrm{x} . * \mathrm{y}=\left(\begin{array}{ccc}10 & 40 & 90 \\ 160 & 250 & 360\end{array}\right)$

Example 2.1

The following figure illustrates a typical calculation in the Command Window.

Figure 2.1: Basic arithmetic in the command window.

2.1.1.2 Operator Precedence

MATLAB allows us to build mathematical expressions with any combination of arithmetic operators. The order of operations are set by precedence levels in which MATLAB evaluates an expression from left to right.

The precedence rules for MATLAB operators are shown in the list below from the highest precedence level to the lowest.

1. Parentheses ()
2. Power (^)
3. Multiplication $\left(^{*}\right)$, right division (/), left division (\backslash)
4. Addition (+), subtraction (-)

2.1.2 Mathematical Functions

MATLAB has all of the usual mathematical functions found on a scientific calculator including square root, logarithm, and sine.

Important: Typing pi returns the number 3.1416. To find the sine of pi, type in sin(pi) and press enter.
important: The arguments in trigonometric functions are in radians. Multiply degrees by pi/180 to get radians. For example, to calculate $\sin (90)$, type in $\sin (90 * \mathrm{pi} / 180)$.

WARning: In MATLAB log returns the natural logarithm of the value. To find the \ln of 10 , type in $\log (10)$ and press enter, (ans $=2.3026)$.

WARNING: MATLAB accepts log10 for common (base 10) logarithm. To find the log of 10, type in $\log 10(10)$ and press enter, $($ ans $=1)$.

Practice the following examples to familiarize yourself with the common mathematical functions. Be sure to read the relevant help and doc pages for functions that are not self explanatory.

Example 2.2

Calculate the following quantities:

1. $\frac{2^{3}}{3^{2}-1}$,
2. $5^{0.5}-1$
3. $\frac{\pi}{4} d^{2}$ for $\mathrm{d}=2$

MATLAB inputs and outputs are as follows:

1. $\frac{2^{3}}{3^{2}-1}$ is entered by typing $2 \wedge 3 /\left(3^{\wedge} 2-1\right)($ ans $=1)$
2. $5^{0.5}-1$ is entered by typing sqrt $(5)-1$ (ans $\left.=1.2361\right)$
3. $\frac{\pi}{4} d^{2}$ for $\mathrm{d}=2$ is entered by typing $\mathrm{pi} / 4 * 2^{\wedge} 2$ (ans $\left.=3.1416\right)$

Example 2.3

Calculate the following exponential and logarithmic quantities:

1. e^{2}
2. $\ln \left(5^{10}\right)$
3. $\log 10^{5}$

MATLAB inputs and outputs are as follows:

1. $\exp (2)(\operatorname{ans}=7.3891)$
2. $\log \left(\left(5^{\wedge} 10\right)\right)($ ans $=16.0944)$
3. $\log 10\left(10^{\wedge} 5\right)(\mathrm{ans}=5)$

Example 2.4

Calculate the following trigonometric quantities:

1. $\cos \left(\frac{\pi}{6}\right)$
2. $\tan (45)$
3. $\sin (\pi)+\cos (45)$

MATLAB inputs and outputs are as follows:

1. $\cos (\mathrm{pi} / 6)(\mathrm{ans}=0.8660)$
2. $\tan (45 * \mathrm{pi} / 180)(\mathrm{ans}=1.0000)$
3. $\sin (\mathrm{pi})+\cos (45 * \mathrm{pi} / 180)(\mathrm{ans}=0.7071)$

2.1.3 The format Function

The format function is used to control how the numeric values are displayed in the Command Window. The short format is set by default and the numerical results are displayed with 4 digits after the decimal point (see the examples above). The long format produces 15 digits after the decimal point.

Example 2.5
Calculate $\theta=\tan \left(\frac{\pi}{3}\right)$ and display results in short and long formats.
The short format is set by default:
$>$ theta=tan(pi/3)

```
theta =
```

1.7321
\gg
And the long format is turned on by typing format long:
\gg theta=tan (pi/3)

```
theta =
```

 1.7321
 $>$ format long
$>$ theta
theta $=$
1.732050807568877

2.1.4 Variables

In MATLAB, a named value is called a variable. MATLAB comes with several predefined variables. For example, the name pi refers to the mathematical quantity π, which is approximately pi ans $=3.1416$

WARNING: MATLAB is case-sensitive, which means it distinguishes between upper- and lowercase letters (e.g. data, DATA and DaTa are three different variables). Command and function names are also case-sensitive. Please note that when you use the command-line help, function names are given in upper-case letters (e.g., CLEAR) only to emphasize them. Do not use upper-case letters when running functions and commands.

2.1.4.1 Declaring Variables

Variables in MATLAB are generally represented as matrix quantities. Scalars and vectors are special cases of matrices having size 1 x 1 (scalar), 1xn (row vector) or nx1 (column vector).

2.1.4.1.1 Declaration of a Scalar

The term scalar as used in linear algebra refers to a real number. Assignment of scalars in MATLAB is easy, type in the variable name followed by $=$ symbol and a number:

Example 2.6
a $=1$

Figure 2.2: Assignment of a scalar quantity.

2.1.4.1.2 Declaration of a Row Vector

Elements of a row vector are separated with blanks or commas.

Example 2.7

Let's type the following at the command prompt:
$\mathrm{b}=\left[\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\right]$

Figure 2.3: Assignment of a row vector quantity.

We can also use the New Variable button to assign a row vector. In the tool strip, select Home $>$ New Variable. This action will create a variable called unnamed which is displayed in the workspace. By clicking on the title unnamed, we can rename it to something more descriptive. By double-clicking on the variable, we can open the Variable Editor and type in the values into spreadsheet looking table.

Figure 2.4: Using the New Variable button in the tool strip.

Figure 2.5: Assignment of a row vector by using the Variable Editor.

2.1.4.1.3 Declaration of a Column Vector

Elements of a column vector is ended by a semicolon:
Example 2.8
c = [1;2;3;4;5;]

Figure 2.6: Assignment of a column vector quantity.

Or by transposing a row vector with the 'operator:
$c=\left[\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\right]$,

Figure 2.7: Assignment of a column vector quantity by transposing a row vector with the 'operator.

Or by using the Variable Editor:

Figure 2.8: Assignment of a column vector quantity by using the Variable Editor.

2.1.4.1.4 Declaration of a Matrix

Matrices are typed in rows first and separated by semicolons to create columns. Consider the examples below:

Example 2.9

Let us type in a 2 x 5 matrix:
$\mathrm{d}=\left[\begin{array}{llllllllll}2 & 4 & 6 & 8 & 10 & 1 & 3 & 5 & 7 & 9\end{array}\right]$

Figure 2.9: Assignment of a 2 x 5 matrix.

Figure 2.10: Assignment of a matrix by using the Variable Editor.

Example 2.10
This example is a 5 x 2 matrix:

Figure 2.11: Assignment of a 5 x 2 matrix.

2.1.5 Linear Equations

Systems of linear equations are very important in engineering studies. In the course of solving a problem, we often reduce the problem to simultaneous equations from which the results are obtained. As you learned earlier, MATLAB stands for Matrix Laboratory and has features to handle matrices. Using the coefficients of simultaneous linear equations, a matrix can be formed to solve a set of simultaneous equations.

Example 2.11

Let's solve the following simultaneous equations:

$$
\begin{gather*}
x+y=1 \tag{2.1}\\
2 x-5 y=9 \tag{2.2}
\end{gather*}
$$

First, we will create a matrix for the left-hand side of the equation using the coefficients, namely 1 and 1 for the first and 2 and -5 for the second. The matrix looks like this:

$$
\left(\begin{array}{cc}
1 & 1 \tag{2.3}\\
2 & -5
\end{array}\right)
$$

The above matrix can be entered in the command window by typing $A=\left[\begin{array}{ll}1 & 1 ; 2\end{array}\right]$.
Second, we create a column vector to represent the right-hand side of the equation as follows:

$$
\begin{equation*}
\binom{1}{9} \tag{2.4}
\end{equation*}
$$

The above column vector can be entered in the command window by typing $B=[1 ; 9]$.
To solve the simultaneous equation, we will use the left division operator and issue the following command: $\mathrm{C}=\mathrm{A} \backslash \mathrm{B}$. These three steps are illustrated below:

```
A=[1 1; 2 -5]
```

$\mathrm{A}=$
$1 \quad 1$

```
        2 -5
> B= [1;9]
B =
            1
            9
C=A\B
C =
            2
    -1
>
```

The result C indicating 2 and 1 are the values for x and y , respectively.

2.1.6 Polynomials

In the preceding section, we briefly learned about how to use MATLAB to solve linear equations. Equally important in engineering problem solving is the application of polynomials. Polynomials are functions that are built by simply adding together (or subtracting) some power functions. (see Wikipedia ${ }^{3}$).

$$
\begin{gather*}
a x^{2}+b x+c=0 \tag{2.5}\\
\mathrm{f}(\mathrm{x})=a x^{2}+b x+c \tag{2.6}
\end{gather*}
$$

The coeffcients of a polynominal are entered as a row vector beginning with the highest power and including the ones that are equal to 0 .

Example 2.12

Create a row vector for the following function: $y=2 x^{4}+3 x^{3}+5 x^{2}+x+10$
Notice that in this example we have 5 terms in the function and therefore the row vector will contain 5 elements. $p=\left[\begin{array}{llll}2 & 3 & 5 & 1 \\ 10\end{array}\right]$

Example 2.13

Create a row vector for the following function: $y=3 x^{4}+4 x^{2}-5$
In this example, coefficients for the terms involving power of 3 and 1 are 0 . The row vector still contains 5 elements as in the previous example but this time we will enter two zeros for the coefficients with power of 3 and 1: $p=\left[\begin{array}{llll}3 & 0 & 4 & 0\end{array}\right.$-5 $]$.

2.1.6.1 The polyval Function

We can evaluate a polynomial p for a given value of x using the syntax polyval (p, x) where p contains the coefficients of polynomial and x is the given number.

[^9]
Example 2.14

Evaluate $\mathrm{f}(\mathrm{x})$ at 5 .

$$
\begin{equation*}
\mathrm{f}(\mathrm{x})=3 x^{2}+2 x+1 \tag{2.7}
\end{equation*}
$$

The row vector representing $f(x)$ above is $p=\left[\begin{array}{ll}3 & 2\end{array} 1\right]$. To evaluate $f(x)$ at 5 , we type in: polyval ($\mathrm{p}, 5$). The following shows the Command Window output:
$\gg \mathrm{p}=\left[\begin{array}{lll}3 & 2 & 1\end{array}\right]$
$p=$
$\begin{array}{lll}3 & 2 & 1\end{array}$
\gg polyval (p,5)
ans =
86
\gg

2.1.6.2 The roots Function

Consider the following equation:

$$
\begin{equation*}
a x^{2}+b x+c=0 \tag{2.8}
\end{equation*}
$$

Probably you have solved this type of equations numerous times. In MATLAB, we can use the roots function to find the roots very easily.

Example 2.15

Find the roots for the following:

$$
\begin{equation*}
0.6 x^{2}+0.3 x-0.9=0 \tag{2.9}
\end{equation*}
$$

To find the roots, first we enter the coefficients of polynomial in to a row vector p with $\mathrm{p}=\left[\begin{array}{ll}0.6 & 0.3\end{array}\right.$ $-0.9]$ and issue the $r=r o o t s(p)$ command. The following shows the command window output:
$\gg \mathrm{p}=\left[\begin{array}{lll}0.6 & 0.3 & -0.9\end{array}\right]$
$p=$
$0.6000 \quad 0.3000 \quad-0.9000$
$\gg \mathrm{r}=$ roots (p)
$\mathrm{r}=$
-1.5000
1.0000
\gg

2.1.7 Splitting a Statement

You will soon find out that typing long statements in the Command Window or in the the Text Editor makes it very hard to read and maintain your code. To split a long statement over multiple lines simply enter three periods "..." at the end of the line and carry on with your statement on the next line.

Example 2.16

The following command window output illustrates the use of three periods:

```
    sin}(\textrm{pi})+\operatorname{cos}(45*\textrm{pi}/180)-\operatorname{sin}(\textrm{pi}/2)+\operatorname{cos}(45*\textrm{pi}/180)+\textrm{tan}(\textrm{pi}/3
ans =
    2.1463
sin(pi)+cos(45*pi/180)-sin(pi/2)...
+cos(45*pi/180)+tan(pi/3)
ans =
    2.1463
>
```


2.1.8 Comments

Comments are used to make scripts more "readable". The percent symbol $\%$ separates the comments from the code. Examine the following examples:

Example 2.17
The long statements are split to make it easier to read. However, despite the use of descriptive variable names, it is hard to understand what this script does, see the following Command Window output:

```
    t_water=80;
t_outside=15;
inner_dia=0.05;
thickness=0.006;
Lambda_steel=48;
AlfaInside=2800;
AlfaOutside=17;
thickness_insulation=0.012;
Lambda_insulation=0.03;
r_i=inner_dia/2
r_o=r_i+thickness
r_i_insulation=r_o
r_o_insulation=r_i_insulation+thickness_insulation
AreaInside=2*pi*r_i
AreaOutside=2*pi*r_o
AreaOutside_insulated=2*pi*r_o_insulation
AreaM_pipe=(2*pi*(r_o-r_i))/log(r_o/r_i)
```

```
AreaM_insulation=(2*pi*(r_o_insulation-r_i_insulation)) ...
    /log(r_o_insulation/r_i_insulation)
TotalResistance=(1/(AlfaInside*AreaInside))+ ...
    (thickness/(Lambda_steel*AreaM_pipe))+(1/(AlfaOutside*AreaOutside))
TotalResistance_insulated=(1/(AlfaInside*AreaInside))+ ...
    (thickness/(Lambda_steel*AreaM_pipe))+(thickness_insulation ...
    /(Lambda_insulation*AreaM_insulation))+(1/(AlfaOutside*AreaOutside_insulated))
Q_dot=(t_water-t_outside)/(TotalResistance*1000)
Q_dot_insulated=(t_water-t_outside)/(TotalResistance_insulated*1000)
PercentageReducttion=((Q_dot-Q_dot_insulated)/Q_dot)*100
```


Example 2.18

The following is an edited version of the above including numerous comments:
\% Problem 16.06
\% Problem Statement
\% Calculate the percentage reduction in heat loss when a layer of hair felt
\% is wrapped around the outside surface (see problem 16.05)
format short

```
% Input Values
t_water=80; % Water temperature [C]
t_outside=15; % Atmospheric temperature [C]
inner_dia=0.05; % Inner diameter [m]
thickness=0.006; % [m]
Lambda_steel=48; % Thermal conductivity of steel [W/mK]
AlfaInside=2800; % Heat transfer coefficient of inside [W/m2K]
AlfaOutside=17; % Heat transfer coefficient of outside [W/m2K]
% Neglect radiation
% Additional layer
thickness_insulation=0.012; % [m]
Lambda_insulation=0.03; % Thermal conductivity of insulation [W/mK]
```

```
% Output Values
% Q_dot=(t_water-t_outside)/TotalResistance
% TotalResistance=(1/(AlfaInside*AreaInside))+(thickness/(Lambda_steel*AreaM))+ ...
(1/(AlfaOutside*AreaOutside)
% Calculating the unknown terms
r_i=inner_dia/2 % Inner radius of pipe [m]
r_o=r_i+thickness % Outer radius of pipe [m]
r_i_insulation=r_o % Inner radius of insulation [m]
r_o_insulation=r_i_insulation+thickness_insulation % Outer radius of pipe [m]
AreaInside=2*pi*r_i
AreaOutside=2*pi*r_o
AreaOutside_insulated=2*pi*r_o_insulation
AreaM_pipe=(2*pi*(r_o-r_i))/log(r_o/r_i) % Logarithmic mean area for pipe
AreaM_insulation=(2*pi*(r_o_insulation-r_i_insulation)) ...
    /log(r_o_insulation/r_i_insulation) % Logarithmic mean area for insulation
TotalResistance=(1/(AlfaInside*AreaInside))+(thickness/ ...
    (Lambda_steel*AreaM_pipe))+(1/(AlfaOutside*AreaOutside))
```

```
TotalResistance_insulated=(1/(AlfaInside*AreaInside))+(thickness/ ...
    (Lambda_steel*AreaM_pipe))+(thickness_insulation/(Lambda_insulation*AreaM_insulation)) ...
    +(1/(AlfaOutside*AreaOutside_insulated))
Q_dot=(t_water-t_outside)/(TotalResistance*1000) % converting into kW
Q_dot_insulated=(t_water-t_outside)/(TotalResistance_insulated*1000) % converting into kW
PercentageReducttion=((Q_dot-Q_dot_insulated)/Q_dot)*100
```


2.1.9 Basic Operations

Command	Meaning
sum	Sum of array elements
prod	Product of array elements
sqrt	Square root
$\log 10$	Common logarithm (base 10)
\log	Natural logarithm
\max	Maximum elements of array
\min	Minimum elements of array
mean	Average or mean value of arrays
std	Standard deviation

Table 2.2: Basic operations.

2.1.10 Special Characters

Character	Meaning
$=$	Assignment
()	Prioritize operations
[]	Construct array
$:$	Specify range of array elements
,	Row element separator in an array
$;$	Column element separator in an array
\ldots	Continue statement to next line
\cdot	Decimal point, or structure field separator
$\%$	Insert comment line into code

Table 2.3: Special Characters

2.1.11 Summary of Key Points

1. MATLAB has the common functions found on a scientific calculator and can be operated in a similar way,
2. MATLAB can store values in variables. Variables are case sensitive and some variables are reserved by MATLAB (e.g. pi stores 3.1416),
3. Variable Editor can be used to enter or manipulate matrices,
4. The coefficients of simultaneous linear equations and polynomials are used to form a row vector. MATLAB then can be used to solve the equations,
5. The format function is used to control the number of digits displayed,
6. Three periods "..." at the end of the line is used to split a long statement over multiple lines,
7. The percent symbol \% separates the comments from the code, anything following $\%$ symbol is ignored by MATLAB.

2.2 Problem Set ${ }^{4}$

Determine the value of each of the following.

Exercise 2.2.1

(Solution on p. 44.)
$6 \times 7+4^{2}-2^{4}$
Exercise 2.2.2
(Solution on p. 44.)
$\frac{3^{2}+2^{3}}{4^{5}-5^{4}}+\frac{64^{0.5}-5^{2}}{4^{5}+5^{6}+7^{8}}$
Exercise 2.2.3
(Solution on p. 44.)
$\log 10^{2}+10^{5}$
Exercise 2.2.4
(Solution on p. 44.)
$e^{2}+2^{3}-\ln \left(e^{2}\right)$
Exercise 2.2.5
(Solution on p. 44.)
$\sin (2 \pi)+\cos \left(\frac{\pi}{4}\right)$
Exercise 2.2.6
(Solution on p. 44.)
$\tan \left(\frac{\pi}{3}\right)+\cos (270)+\sin (270)+\cos \left(\frac{\pi}{3}\right)$

Exercise 2.2.7

(Solution on p. 44.)
Solve the following system of equations:
$2 x+4 y=1$
$x+5 y=2$
Exercise 2.2.8
(Solution on p. 44.)
Evaluate y at 5 .
$y=4 x^{4}+3 x^{2}-x$

Exercise 2.2.9

(Solution on p. 45.)
Given below is Load-Gage Length data for a type 304 stainless steel that underwent a tensile test. Original specimen diameter is $12.7 \mathrm{~mm} .{ }^{5}$

[^10]| Load [N] | Gage Length [mm] |
| :---: | :---: |
| 0.000 | 50.8000 |
| 4890 | 50.8102 |
| 9779 | 50.8203 |
| 14670 | 50.8305 |
| 19560 | 50.8406 |
| 24450 | 50.8508 |
| 27620 | 50.8610 |
| 29390 | 50.8711 |
| 32680 | 50.9016 |
| 33950 | 50.9270 |
| 34580 | 50.9524 |
| 35220 | 50.9778 |
| 35720 | 51.0032 |
| 40540 | 51.816 |
| 48390 | 53.340 |
| 59030 | 55.880 |
| 65870 | 58.420 |
| 69420 | 60.960 |
| 69670 (maximum) | 61.468 |
| 68150 | 63.500 |
| 60810 (fracture) | 66.040 (after fracture) |

Table 2.4
$\sigma=\frac{P}{A}$, where P is the load $[\mathrm{N}]$ on the sample with an original cross-sectional area $\mathrm{A}\left[m^{2}\right]$ and the engineering strain is defined as $\epsilon=\frac{\Delta l}{l}$, where Δl is the change in length and l is the initial length.

Compute the stress and strain values for each of the measurements obtained in the tensile test. Data available for download. ${ }^{6}$

[^11]
Solutions to Exercises in Chapter 2

```
>A=[2 4; 1 5]
A =
    2 4
        5
>B=[1; 2]
B =
    1
    2
 Solution=A\B
Solution =
    -0.5000
    0.5000
```

Solution to Exercise 2.2.1 (p. 42)
$\gg(6 * 7)+4 \wedge 2-2 \wedge 4($ ans $=42)$
Solution to Exercise 2.2.2 (p. 42)
$\gg\left(\left(3^{\wedge} 2+2^{\wedge} 3\right) /\left(4^{\wedge} 5-5^{\wedge} 4\right)\right)+\left(\left(\operatorname{sqrt}(64)-5^{\wedge} 2\right) /\left(4^{\wedge} 5+5^{\wedge} 6+7 \wedge 8\right)\right)($ ans $=0.0426)$
Solution to Exercise 2.2.3 (p. 42)
$>\log 10\left(10^{\wedge} 2\right)+10^{\wedge} 5($ ans $=100002)$
Solution to Exercise 2.2.4 (p. 42)
$>\exp (2)+2^{\wedge} 3-\log (\exp (2))($ ans $=13.3891)$
Solution to Exercise 2.2.5 (p. 42)
$\gg \sin (2 * \mathrm{pi})+\cos (\mathrm{pi} / 4)(\mathrm{ans}=0.7071)$
Solution to Exercise 2.2.6 (p. 42)
$>\tan (\mathrm{pi} / 3)+\cos (270 * \mathrm{pi} / 180)+\sin (270 * \mathrm{pi} / 180)+\cos (\mathrm{pi} / 3)(\mathrm{ans}=1.2321)$
Solution to Exercise 2.2.7 (p. 42)

Solution to Exercise 2.2.8 (p. 42)

```
> p=[[llllll}
p =
    4 0
p polyval(p,5)
ans =
```


Solution to Exercise 2.2 .9 (p. 42)

First, we need to enter the data sets. Because it is rather a large table, using Variable Editor is more convenient. See the figures below:

Figure 2.12: Load in Newtons

Figure 2.13: Extension length in mm.

Next, we will calculate the cross-sectional area.

Area=pi/4* (0.0127~2)

Area =
$1.2668 \mathrm{e}-004$
Now, we can find the Stress values with the following, note that we are obtaining results in MPa:
Sigma $=($ Load_N. $/$ Area $) * 10^{\wedge}(-6)$
Sigma =

0
38.6022
77.1964
115.8065
154.4086
193.0108
218.0351
232.0076
257.9792
268.0047
272.9780
278.0302
281.9773
320.0269
381.9955

```
465.9888
519.9844
548.0085
549.9820
537.9830
480.0403
```

For strain calculation, we will first find the change in length:

```
Delta_L =
                    0
        0.0102
        0.0203
        0.0305
        0.0406
        0.0508
        0.0610
        0.0711
        0.1016
        0.1270
        0.1524
        0.1778
        0.2032
        1.0160
        2.5400
        5.0800
        7.6200
        10.1600
        10.6680
        12.7000
        15.2400
```

Delta_L=Length_mm-50.800

Now we can determine Strain with the following:

Epsilon=Delta_L./50. 800
Epsilon =
0
0.0002
0.0004
0.0006
0.0008
0.0010
0.0012
0.0014
0.0020
0.0025
0.0030
0.0035
0.0040
0.0200
0.0500
0.1000
0.1500
0.2000
0.2100
0.2500
0.3000

The final results can be tabulated as foolows:

```
[Sigma Epsilon]
```

ans =

0	0
38.6022	0.0002
77.1964	0.0004
115.8065	0.0006
154.4086	0.0008
193.0108	0.0010
218.0351	0.0012
232.0076	0.0014
257.9792	0.0020
268.0047	0.0025
272.9780	0.0030
278.0302	0.0035
281.9773	0.0040
320.0269	0.0200
381.9955	0.0500
465.9888	0.1000
519.9844	0.1500
548.0085	0.2000
549.9820	0.2100
537.9830	0.2500
480.0403	0.3000

Chapter 3

Graphics

3.1 Plotting in MATLAB ${ }^{1}$

A picture is worth a thousand words, particularly visual representation of data in engineering is very useful. MATLAB has powerful graphics tools and there is a very helpful section devoted to graphics in MATLAB Help: Graphics. Students are encouraged to study that section; what follows is a brief summary of the main plotting features.

[^12]
3.1.1 Two-Dimensional Plots

3.1.1.1 The plot Statement

Probably the most common method for creating a plot is by issuing plot (x , y) statement where function y is plotted against x .

Example 3.1

Type in the following statement at the MATLAB prompt:
$x=[-p i: .1: p i] ; y=\sin (x) ; p l o t(x, y) ;$
After we executed the statement above, a plot named Figure1 is generated:

Figure 3.1: Graph of $\sin (\mathrm{x})$

Having variables assigned in the Workspace, x and $\mathrm{y}=\sin (\mathrm{x})$ in our case, we can also select x and y , and right click on the selected variables. This opens a menu from which we choose plot(x, y). See the figure below.

Figure 3.2: Creating a plot from Workspace.

3.1.1.2 Annotating Plots

Graphs without labels are incomplete and labeling elements such as plot title, labels for x and y axes, and legend should be included. Using up arrow, recall the statement above and add the annotation commands as shown below.

```
x=[-pi:.1:pi];y=sin(x);plot(x,y);title('Graph of y=sin(x)');xlabel('x');ylabel('sin(x)');grid on
```

Run the file and compare your result with the first one.

Figure 3.3: Graph of $\sin (\mathrm{x})$ with Labels.

ASIDE: Type in the following at the MATLAB prompt and learn additional commands to annotate plots:

```
help gtext
help legend
help zlabel
```


3.1.1.3 Superimposed Plots

If you want to merge data from two graphs, rather than create a new graph from scratch, you can superimpose the two using a simple trick:

```
    % This script generates }\operatorname{sin}(\textrm{x})\mathrm{ and }\operatorname{cos}(\textrm{x})\mathrm{ plot on the same graph
% initialize variables
x=[-pi:.1:pi]; %create a row vector from -pi to +pi with . 1 increments
y0=sin(x); %calculate sine value for each x
y1=cos(x); %calculate cosine value for each x
```

```
% Plot sin(x) and cos(x) on the same graph
plot(x,y0,x,y1);
title('Graph of sin(x) and cos(x)'); %Title of graph
xlabel('x'); %Label of x axis
ylabel('sin(x), cos(x)'); %Label of y axis
legend('sin(x)','\operatorname{cos(x)'); %Insert legend in the same order as y0 and y1 calculated}
grid on %Graph grid is turned
```


Figure 3.4: Graph of $\sin (\mathrm{x})$ and $\cos (\mathrm{x})$ in the same plot with labels and legend.

3.1.1.4 Multiple Plots in a Figure

Multiple plots in a single figure can be generated with subplot in the Command Window. However, this time we will use the built-in Plot Tools. Before we initialize that tool set, let us create the necessary variables using the following script:

```
    % This script generates sin(x) and cos(x) variables
clc %Clears command window
clear all %Clears the variable space
close all %Closes all figures
X1=[-2*pi:.1:2*pi]; %Creates a row vector from -2*pi to 2*pi with . 1 increments
```

$\mathrm{Y} 1=\sin (\mathrm{X} 1)$; \quad \%Calculates sine value for each x
$\mathrm{Y} 2=\cos (\mathrm{X} 1)$; \quad Calculates cosine value for each x
$\mathrm{Y} 3=\mathrm{Y} 1+\mathrm{Y} 2$; \quad CCalculates $\sin (\mathrm{x})+\cos (\mathrm{x})$
$\mathrm{Y} 4=\mathrm{Y} 1-\mathrm{Y} 2$; $\quad \%$ Calculates $\sin (\mathrm{x})-\cos (\mathrm{x})$
Note that the above script clears the command window and variable workspace. It also closes any open Figures. After running the script, we will have X1, Y1, Y2, Y3 and Y4 loaded in the workspace. Next, select File $>$ New > Figure, a new Figure window will open. Click "Show Plot Tools and Dock Figure" on the tool bar.

Figure 3.5: Plot Tools

Under New Subplots > 2D Axes, select four vertical boxes that will create four subplots in one figure. Also notice, the five variables we created earlier are listed under Variables.

Figure 3.6: Creating four sub plots.

After the subplots have been created, select the first supblot and click on "Add Data". In the dialog box, set X Data Source to X1 and Y Data Source to Y1. Repeat this step for the remaining subplots paying attention to Y Data Source (Y2, Y3 and Y4 need to be selected in the subsequent steps while X1 is always the X Data Source).

Figure 3.7: Adding data to axes.

Next, select the first item in "Plot Browser" and activate the "Property Editor". Fill out the fields as shown in the figure below. Repeat this step for all subplots.

Figure 3.8: Using "Property Editor".

Save the figure as $\sin x \cos x . f i g$ in the current directory.

Figure 3.9: The four subplots generated with "Plot Tools".

Figure 3.10: The four subplots in a single figure.

3.1.2 Three-Dimensional Plots

3D plots can be generated from the Command Window as well as by GUI alternatives. This time, we will go back to the Command Window.

3.1.2.1 The plot3 Statement

With the $\mathrm{X} 1, \mathrm{Y} 1, \mathrm{Y} 2$ and Y 2 variables still in the workspace, type in $\mathrm{plot} 3(\mathrm{X} 1, \mathrm{Y} 1, \mathrm{Y} 2)$ at the MATLAB prompt. A figure will be generated, click "Show Plot Tools and Dock Figure".

Figure 3.11: A raw 3D figure is generated with plot3.

Use the property editor to make the following changes.

Figure 3.12: 3D Property Editor.

The final result should look like this:

Figure 3.13: 3 D graph of $\mathrm{x}, \sin (\mathrm{x}), \cos (\mathrm{x})$

Use help or doc commands to learn more about 3D plots, for example, image(x), surf (x) and mesh(x).

3.1.3 Quiver or Velocity Plots

To plot vectors, it is useful to draw arrows so that the direction of the arrow points the direction of the vector and the length of the arrow is vector's magnitude. However the standard plot function is not suitable for this purpose. Fortunately, MATLAB has quiver function appropriately named to plot arrows. quiver (x, y , u, v) plots vectors as arrows at the coordinates (x, y) with components (u, v). The matrices $\mathrm{x}, \mathrm{y}, \mathrm{u}$, and v must all be the same size and contain corresponding position and velocity components.

Example 3.2

Calculate the magnitude of forces OA, OB and the resultant R of OA and OB shown below. Plot
all three forces on $x-y$ Cartesian coordinate system ${ }^{2}$.

Figure 3.14: Quiver Plot.

```
    % Preparation
clear % removes all variables from the current workspace,
    % releasing them from system memory.
clc % clears all input and output from the Command Window display,
        % giving you a "clean screen."
% Input and Computation
OA=[600 320]; % Force 1
mag0A=sqrt(sum(0A. - 2));
OB=[-200 -480]; % Force 2
mag0B=sqrt(sum(OB.^2));
OC=OA+OB; % The resultant of OA and OB
magOC=sqrt(sum(OC.^2)); % The magnitude of resultant force OC
angleMag=atan(OC(2)/OC(1))*180/pi; % angle of OC in degrees
% Output
disp(', ') % Display blank line
str1= ['The magnitude of the resultant force is ', num2str(magOC), ' N.'];
disp(str1);
str2= ['The angle of the resultant force is ', num2str(angleMag), ' degrees.'];
disp(str2);
```

[^13]```
% Plot Preparation
starts = zeros(3,2); % Origin for all 3 forces, 3x2 "zero" matrix
ends = [OA;OB;OC]; % End point for all 3 forces
vectors = horzcat(starts,ends); % Concatenate arrays horizontally
% Plot Forces on x-y Cartesian Coordinate System
% The following MATLAB function plots vectors as arrows
% at the coordinates specified in each corresponding
% pair of elements in x and y.
quiver(vectors(:,1), vectors(:,2), vectors(:,3), vectors(:,4));
axis equal
grid
title('Forces on x-y Cartesian Coordinate System')
xlabel('x') % x-axis label
ylabel('y') % y-axis label
view(2) % setting view to 2-D
```

Forces on $x-y$ Cartesian Coordinate System


Figure 3.15: Output of quiver function.

## Example 3.3

Write an interactive script to calculate the resultant R of forces F1, F2 and F3 shown below and
plot all four forces on $x$-y Cartesian coordinate system ${ }^{3}$.


Figure 3.16: An example for quiver3 plot.

```
 clear
clc
disp('This script computes the resultant of three forces on x-y Cartesian coordinate system.')
f1=input('Enter the magnitude of first force in N: ');
theta1=input('Enter the angle of first force in deg: ');
f2=input('Enter the magnitude of second force in N: ');
theta2=input('Enter the angle of second force in deg: ');
f3=input('Enter the magnitude of third force in N: ');
theta3=input('Enter the angle of third force in deg: ');
x1=f1*\operatorname{cos(theta1*pi/180); % The components of force}
y1=f1*sin(theta1*pi/180); % The components of force
F1=[x1 y1]; % Force 1
x2=f2*cos(theta2*pi/180); % The components of force
y2=f2*sin(theta2*pi/180); % The components of force
F2=[x2 y2]; % Force 2
```

[^14]```
x3=f3*cos(theta3*pi/180); % The components of force
y3=f3*sin(theta3*pi/180); % The components of force
F3=[x3 y3]; % Force 3
R=F1+F2+F3; % The resultant of F1, F2 and F3
magR=sqrt(sum(R.^2)); % The magnitude of resultant force R
angle=atan(R(2)/R(1))*180/pi; % Angle of R in degrees
disp(',') % Display blank line
str1= ['The magnitude of the resultant force is ', num2str(magR), ' N.'];
disp(str1);
str2= ['The angle of the resultant force is ', num2str(angle), ' degrees.'];
disp(str2);
starts = zeros(4,3);
ends = [F1;F2;F3;R];
ends(3,3)=0; % inputs 0s for z components, making it 3D
vectors = horzcat(starts,ends); % Concatenate arrays horizontally
quiver3( vectors( :,1 ), vectors( :,2 ), vectors( :,3 ), vectors( :,4 ), vectors( :,5 ), vectors( :,6 )
axis equal
title('Forces on x-y Cartesian coordinate system')
xlabel('x') % x-axis label
ylabel('y') % y-axis label
view(2)
```


Figure 3.17: Output of quiver3 function.

3.1.4 Summary of Key Points

1. $\mathrm{plot}(\mathrm{x}, \mathrm{y})$ and $\mathrm{plot} 3(\mathrm{X} 1, \mathrm{Y} 1, \mathrm{Y} 2)$ statements create 2 - and $3-\mathrm{D}$ graphs respectively,
2. Plots at minimum should contain the following elements: title, xlabel, ylabel and legend,
3. Annotated plots can be easily generated with GUI Plot Tools,
4. quiver and quiver3 plots are useful for making vector diagrams.

3.2 Problem Set ${ }^{4}$

Exercise 3.2.1

(Solution on p. 71.)
Plot $y=a+b x$, using the specified coefficients and ranges (use increments of 0.1):

[^15]a. $a=2, b=0.3$ for $0 \leq x \leq 5$
b. $a=3, b=0$ for $0 \leq x \leq 10$
c. $a=4, b=-0.3$ for $0 \leq x \leq 15$

Exercise 3.2.2

(Solution on p. 71.)
Plot the following functions, using increments of 0.01 and $a=6, b=0.8,0 \leq x \leq 5$:
a. $y=a+x^{b}$
b. $y=a x^{b}$
c. $y=a \sin (x)$

Exercise 3.2.3

(Solution on p. 73.)
Plot function $y=\frac{\sin (x)}{x}$ for $\frac{\pi}{100} \leq x \leq 10 \pi$ using increments of $\frac{\pi}{100}$
Exercise 3.2.4
(Solution on p. 74.)
Data collected from Boyle's Law experiment are as follows: (Data available for download. ${ }^{5}$)

Volume [cm ${ }^{\wedge}$ 3]	Pressure [Pa]
7.34	100330
7.24	102200
7.14	103930
7.04	105270
6.89	107400
6.84	108470
6.79	109400
6.69	111140
6.64	112200

Table 3.1
Plot a graph of Pressure vs Volume, annotate your graph.

Exercise 3.2.5

(Solution on p. 75.)
The original data collected from Boyle's ${ }^{6}$ experiment are as follows: (Data available for download. ${ }^{7}$)

Volume [tube-inches]	Pressure [inches-Hg]
12	29.125
10	35.000
8	43.688
6	58.250
5	70.000
4	87.375
3	116.500

[^16]
Table 3.2

Plot a graph of Pressure vs Volume, annotate your graph.

Exercise 3.2.6

(Solution on p. 76.)
Display the two plots created earlier in one plot.

Exercise 3.2.7

(Solution on p. 77.)
A tensile test of SAE 1020 steel produced the data below (Data available for download. ${ }^{8}$) ${ }^{9}$ experiment are as follows:

Extension [mm]	Load [kN]
0.00	0.0
0.09	1.9
0.31	6.1
0.47	9.4
2.13	11.0
5.05	11.7
10.50	12.0
16.50	11.9
23.70	10.7
27.70	9.3
34.50	8.1

Table 3.3
Plot a graph of Load vs Extension, annotate your graph.

Exercise 3.2.8

(Solution on p. 78.)
Given below is Stress-Strain data for a type 304 stainless steel. ${ }^{10}$ experiment are as follows: (Data available for download. ${ }^{11}$)

[^17]| Stress [MPa] | Strain $[\mathrm{mm} / \mathbf{m m}]$ |
| :--- | :--- |
| 0.0 | 0.0000 |
| 38.6 | 0.0002 |
| 77.2 | 0.0004 |
| 115.8 | 0.0006 |
| 154.4 | 0.0008 |
| 193.0 | 0.0010 |
| 218.0 | 0.0012 |
| 232.0 | 0.0014 |
| 258.0 | 0.0020 |
| 268.0 | 0.0025 |
| 273.0 | 0.0030 |
| 278.0 | 0.0035 |
| 282.0 | 0.0040 |
| 320.0 | 0.0200 |
| 382.0 | 0.0500 |
| 466.0 | 0.1000 |
| 520.0 | 0.1500 |
| 548.0 | 0.2000 |
| 550.0 | 0.2100 |
| 538.0 | 0.2500 |
| 480.0 | 0.3000 |
| | |

Table 3.4
Plot a graph of Stress vs Strain, annotate your graph.

Solutions to Exercises in Chapter 3

Solution to Exercise 3.2 .1 (p. 67)
a.

```
    a=2; b=.3; x=[0:.1:5]; y=a+b*x;
    plot(x,y),title('Graph of y=a+bx'),xlabel('x'),ylabel('y'),grid
```

b.

```
            a=3; b=.0; x=[0:.1:10]; y=a+b*x;
    plot(x,y),title('Graph of y=a+bx'),xlabel('x'),ylabel('y'),grid
```

c.

```
    a=2; b=.3; x=[0:.1:5]; y=a+b*x;
    plot(x,y),title('Graph of y=a+bx'),xlabel('x'),ylabel('y'),grid
```

Solution to Exercise 3.2 .2 (p. 68)
a.
$\mathrm{a}=6$; $\mathrm{b}=.8$; $\mathrm{x}=[0: .01: 5]$; $\mathrm{y}=\mathrm{a}+\mathrm{x} .{ }^{\wedge} \mathrm{b}$;
plot (x, y), title('Graph of $\left.y=a+x^{\wedge} b^{\prime}\right), x l a b e l(' x '), y l a b e l(' y '), g r i d$

b.

```
    a=6; b=.8; x=[0:.01:5]; y=a*x.^b;
plot(x,y),title('Graph of y=ax`b'),xlabel('x'),ylabel('y'),grid
```


c.

```
    a=6; x=[0:.01:5]; y=a*sin(x);
plot(x,y),title('Graph of y=a*sin(x)'),xlabel('x'),ylabel('y'),grid
```


Solution to Exercise 3.2 .3 (p. 68)
$\mathrm{x}=\mathrm{pi} / 100: \mathrm{pi} / 100: 10 * \mathrm{pi}$;
$y=\sin (x) . / x ;$
plot(x, y),title('Graph of $y=\sin (x) / x$ '), xlabel('x'),ylabel('y'),grid

Figure 3.18: Graph of $y=\frac{\sin (x)}{x}$

Solution to Exercise 3.2 .4 (p. 68)

Pressure $=[100330,102200,103930,105270,107400,108470,109400,111140,112200]$;
Volume=[7.34,7.24,7.14,7.04,6.89,6.84,6.79,6.69,6.64];
plot(Volume, Pressure),title('Pressure Volume Graph'), xlabel('Volume'), ylabel('Pressure'), grid

Solution to Exercise 3.2.5 (p. 68)

```
    >P=[29.125,35,43.688,58.25,70,87.375,116.5];
\ =[12,10,8,6,5,4,3];
> plot(V,P),title('Pressure Volume Graph'),xlabel('Volume'),ylabel('Pressure'),grid
```


Solution to Exercise 3.2 .6 (p. 69)

Solution to Exercise 3.2 .7 (p. 69)

Extension $=[0.00,0.09,0.31,0.47,2.13,5.05,10.50,16.50,23.70,27.70,34.50]$;
$\operatorname{Load}=[0.0,1.9,6.1,9.4,11.0,11.7,12.0,11.9,10.7,9.3,8.1]$;
plot(Extension, Load),title('Load versus Extension Curve'), xlabel('Extension'),ylabel('Load'),grid

Solution to Exercise 3.2 .8 (p. 69)
The data can be entered using Variable Editor:

Then execute the following:

```
plot(Strain,Stress),title('Stress versus Strain Curve'),xlabel('Strain [mm/mm]'),ylabel('Stress [mP:
```


Chapter 4

Introductory Programming

4.1 Writing Scripts to Solve Problems ${ }^{1}$

MATLAB provides scripting and automation tools that can simplify repetitive computational tasks. For example, a series of commands executed in a MATLAB session to solve a problem can be saved in a script file called an m-file. An m-file can be executed from the command line by typing the name of the file or by pressing the run button in the built-in text editor tool bar.

[^18]
4.1.1 Script Files

A script is a file containing a sequence of MATLAB statements. Script files have a filename extension of .m. By typing the filename at the command prompt, we can run the script and obtain results in the command window.

Figure 4.1: Number of m-files are displayed in the Current Folder sub-window.

A sample m-file named ThermalConductivity.m is displayed in Text Editor below. Note the triangle (in green) run button in the tool bar, pressing this button executes the script in the command window.

Figure 4.2: The content of ThermalConductivity.m file is displayed in Text Editor.

Now let us see how an m-file is created and executed.

Example 4.1

A cylindrical acetylene bottle with a radius $\mathrm{r}=0.3 \mathrm{~m}$ has a hemispherical top. The height of the cylindrical part is $\mathrm{h}=1.5 \mathrm{~m}$. Write a simple script to calculate the volume of the acetylene bottle.

To solve this problem, we will first apply the volume of cylinder equation (4.1). Using the volume of sphere equation (4.2), we will calculate the volume of hemisphere (4.3). The total volume of the acetylene bottle is found with the sum of volumes equation (4.4).

$$
\begin{gather*}
V_{\text {cylinder }}=\pi r^{2} h \tag{4.1}\\
V_{\text {sphere }}=\frac{4}{3} \pi r^{3} \tag{4.2}\\
V_{\text {top }}=\frac{2}{3} \pi r^{3} \tag{4.3}\\
V_{\text {acetylene bottle }}=V_{\text {cylinder }}+V_{\mathrm{top}} \tag{4.4}
\end{gather*}
$$

To write the script, we will use the built-in text editor. From the menu bar select File $>$ New $>$ Script. The text editor window will open in a separate window. First save this file as AcetyleneBottle.m. In that window type the following code paying attention to the use of percentage and semicolon symbols to comment out the lines and suppress the output, respectively.
\% This script computes the volume of an acetylene bottle with a radius $\mathrm{r}=0.3 \mathrm{~m}$, $\%$ a hemispherical top and a height of cylindrical part $\mathrm{h}=1.5 \mathrm{~m}$.
$\mathrm{r}=0.3$; $\%$ Radius [m]
$\mathrm{h}=1.5$; $\%$ Height [m]
Vol_top=(2*pi*r^3)/3; $\%$ Calculating the volume of hemispherical top [m3]
Vol_cyl=pi*r^2*h; \% Calculating the volume of cylindrical bottom [m3]
Vol_total=Vol_top+Vol_cyl \% Calculating the total volume of acetylene bottle [m3]

Figure 4.3: Script created with the built-in text editor.

After running the script by pressing the green button in the Text Editor tool bar, the output is displayed in the command window as shown below.

Figure 4.4: The MATLAB output in the command window.

4.1.2 The input Function

Notice that the script we have created above (Example 4.1) is not interactive and computes the total volume only for the variables defined in the m-file. To make this script interactive we will make some changes to the existing AcetyleneBottle.m by adding input function and save it as AcetyleneBottleInteractive.m.

The syntax for input is as follows:

```
userResponse = input('prompt')
```


Example 4.2

Now, let's incorporate the input command in AcetyleneBottleInteractive.m as shown below and the subsequent figure:
\% This script computes the volume of an acetylene bottle
\% user is prompted to enter
\% a radius r for a hemispherical top
\% a height h for a cylindrical part
$r=i n p u t(' E n t e r ~ t h e ~ r a d i u s ~ o f ~ a c e t y l e n e ~ b o t t l e ~ i n ~ m e t e r s ~ ') ; ~ ; ~$
h=input ('Enter the height of cylindrical part of acetylene bottle in meters ');
Vol_top=(2*pi*r^3)/3; $\%$ Calculating the volume of hemispherical top [m3]
Vol_cyl=pi*r^2*h; $\%$ Calculating the volume of cylindrical bottom [m3]
Vol_total=Vol_top+Vol_cyl \% Calculating the total volume of acetylene bottle [m3]

Figure 4.5: Interactive script that computes the volume of acetylene cylinder.

The command window upon run will be as follows, note that user keys in the radius and height values and the same input values result in the same numerical answer as in example (Example 4.1) which proves that the computation is correct.

Figure 4.6: The same numerical result is obtained through interactive script.

4.1.3 The disp Function

As you might have noticed, the output of our script is not displayed in a well-formatted fashion. Using disp, we can control how text or arrays are displayed in the command window. For example, to display a text string on the screen, type in disp('Hello world!'). This command will return our friendly greeting as follows: Hello world!
disp(variable) can be used to display only the value of a variable. To demonstrate this, issue the following command in the command window:

$$
\mathrm{b}=\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5
\end{array}\right]
$$

We have created a row vector with 5 elements. The following is displayed in the command window:

```
>b}=[\begin{array}{lllll}{1}&{2}&{3}&{4}&{5}\end{array}
```

$\mathrm{b}=$
$\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$
Now if we type in disp(b) and press enter, the variable name will not be displayed but its value will be printed on the screen:

```
disp(b)
    1 
```

The following example demonstrates the usage of disp function.

Example 4.3

Now, let's open AcetyleneBottleInteractive.m file and modify it by using the disp command. First save the file as AcetyleneBottleInteractiveDisp.m, so that we don't accidentally introduce errors to a working file and also we can easily find this particular file that utilizes the disp command in the future. The new file should contain the code below:

```
    % This script computes the volume of an acetylene bottle
    % user is prompted to enter
        % a radius r for a hemispherical top
        % a height h for a cylindrical part
        % Clear screen
clc
disp('This script computes the volume of an acetylene bottle')
r=input('Enter the radius of acetylene bottle in meters ');
h=input('Enter the height of cylindrical part of acetylene bottle in meters ');
Vol_top=(2*pi*r^3)/3; % Calculating the volume of hemispherical top [m3]
Vol_cyl=pi*r^2*h; % Calculating the volume of cylindrical bottom [m3]
Vol_total=Vol_top+Vol_cyl; % Calculating the total volume of acetylene bottle [m3]
disp(',) % Display blank line
disp('The volume of the acetylene bottle is') % Display text
disp(Vol_total) % Display variable
```

Your screen output should look similar to the one below:

```
    This script computes the volume of an acetylene bottle
Enter the radius of acetylene bottle in meters . }
Enter the height of cylindrical part of acetylene bottle in meters 1.5
```

The volume of the acetylene bottle is
0.4807

4.1.4 The num2str Function

The num2str function allows us to convert a number to a text string. Basic syntax is str = num2str (A) where variable A is converted to a text and stored in str. Let's see how it works in AcetyleneBottleInteractiveDisp.m. Remember to save the file with a different name before editing it, for example, AcetyleneBottleInteractiveDisp1.m.

Example 4.4

Add the following line of code to your file:
str $=$ ['The volume of the acetylene bottle is ', num2str(Vol_total), ' cubic meters.'];
Notice that the three arguments in str are separated with commas. The first argument is a simple text that is contained in ' '. The second argument is where the number to string conversion take place. And finally the third argument is also a simple text that completes the sentence displayed on the screen. Using semicolon at the end of the line suppresses the output. In the next line of our script, we will call str with disp(str);

AcetyleneBottleInteractiveDisp1.m file should look like this:

```
    % This script computes the volume of an acetylene bottle
    % user is prompted to enter
        % a radius r for a hemispherical top
        % a height h for a cylindrical part
% Clear screen
disp('This script computes the volume of an acetylene bottle:')
disp(',) % Display blank line
r=input('Enter the radius of acetylene bottle in meters ');
h=input('Enter the height of cylindrical part of acetylene bottle in meters ');
Vol_top=(2*pi*r^3)/3; % Calculating the volume of hemispherical top [m3]
Vol_cyl=pi*r^2*h; % Calculating the volume of cylindrical bottom [m3]
Vol_total=Vol_top+Vol_cyl; % Calculating the total volume of acetylene bottle [m3]
disp(',') % Display blank line
str = ['The volume of the acetylene bottle is ', num2str(Vol_total), , cubic meters.'];
disp(str);
```

Running the script should produce the following:
This script computes the volume of an acetylene bottle:
Enter the radius of acetylene bottle in meters . 3
Enter the height of cylindrical part of acetylene bottle in meters 1.5

The volume of the acetylene bottle is 0.48066 cubic meters.

4.1.5 The fopen and fclose Functions

The first command is used to open or create a file. The basic syntax for fopen is as follows:

```
fid = fopen(filename, permission)
```

For example, fo $=$ fopen('output.txt', ${ }^{\prime}{ }^{\prime}$ '); opens or creates a new file named output.txt and sets the permission for writing. If the file already exists, it discards the existing contents.
fclose command is used to close a file. For example, if we type in fclose(fo); we close the file that was created above.

4.1.6 The fprintf Function

fprintf function writes formatted data to the computer monitor or a file. This command can be used to save the results of a calculation to a file. To do this, first we create or open an output file with fopen, second we issue the fprintf command and then we close the output file with fclose.

The simplified syntax for fprintf is as follows:

```
fprintf=(fid, format, variable1, variable 2, ...)
```


Example 4.5

Add the following lines to your .m file:

```
    fo = fopen('output.txt', 'W');
fprintf(fo,'The radius of acetylene bottle: %g meters \n', r);
fprintf(fo,'The height of cylindrical part of acetylene bottle: %g meters \n', h);
fprintf(fo,'The volume of the acetylene bottle: %g cubic meters. \n', Vol_total);
fclose(fo);
```

Here, we first create the output.txt file that will contain the following three variables r, h and Vol_total. In the fo output file, the variables are formated with $\% \mathrm{~g}$ which automatically uses the shortest display format. You can also use $\% i$ or $\%$ dor integers and $\%$ e for scientific notation. In our script above, the $\backslash \mathrm{n}$ (newline) moves the cursor to the next line.

Naming the new .m file as AcetyleneBottleInteractiveOutput.m, it should look like this:
\% This script computes the volume of an acetylene bottle
$\%$ user is prompted to enter
$\%$ a radius r for a hemispherical top
\% a height h for a cylindrical part
clc
\% Clear screen
disp('This script computes the volume of an acetylene bottle:')
disp(' ') \% Display blank line
$r=i n p u t(' E n t e r ~ t h e ~ r a d i u s ~ o f ~ a c e t y l e n e ~ b o t t l e ~ i n ~ m e t e r s ~ ') ; ~ ; ~$
h=input('Enter the height of cylindrical part of acetylene bottle in meters ');
Vol_top=(2*pi*r^3)/3; $\%$ Calculating the volume of hemispherical top [m3]
Vol_cyl=pi*r^2*h; \quad C Calculating the volume of cylindrical bottom [m3]
Vol_total=Vol_top+Vol_cyl; \% Calculating the total volume of acetylene bottle [m3]
disp(', ') \% Display blank line
str $=$ ['The volume of the acetylene bottle is , num2str(Vol_total), , cubic meters.'];
disp(str);
fo = fopen('output.txt', 'w');
fprintf(fo,'The radius of acetylene bottle: $\%$ g meters $\backslash \mathrm{n}$ ', r);
fprintf(fo,' The height of cylindrical part of acetylene bottle: \%g meters $\backslash \mathrm{n}$, , h);
fprintf (fo,' The volume of the acetylene bottle: \%g cubic meters. \n', Vol_total);
fclose(fo);
Upon running the file, the output.txt file will display the following:
The radius of acetylene bottle: 0.3 meters
The height of cylindrical part of acetylene bottle: 1.5 meters
The volume of the acetylene bottle: 0.480664 cubic meters.

4.1.7 Loops

In programming, a loop executes a set of code a specified number of times or until a condition is met.

4.1.7.1 For Loop

This loop iterates an index variable from an initial value using a specified increment to a final value and runs a set of code. The for loop syntax is the following:

```
for loop_index=vector_statement
    code
    ..
    code
end
```


Example 4.6

Calculate $y=\cos (x)$ for $-\pi \leq x \leq \pi$ using an increment of $\frac{\pi}{4}$.

```
for x=-pi:pi/4:pi
    y=cos(x);
    fprintf('%8.3f %8.2f \n',x,y);
end
```

In the brief script above, x is the loop index that is initiated from $-\pi$ and incremented with $\frac{\pi}{4}$ to a final value of π. At the end of each increment, $y=\cos (x)$ is calculated and displayed with the fprintf command. This process continues until $x=\pi$.

From a previous exercise we know \backslash n creates a new line when included in the fprintf command. Here, we also use $\% 8.3 f$ to specify eight spaces and three decimal places for the first variable x . Likewise $\% 8.2 \mathrm{f}$ specifies the formatting for the second variable y but in this case, y is displayed with two decimal places. The result is the following:

-3.142	-1.00
-2.356	-0.71
-1.571	0.00
-0.785	0.71
0.000	1.00
0.785	0.71
1.571	0.00
2.356	-0.71
3.142	-1.00

We can improve our code by adding formatting lines as follows:

```
clear; clc;
fprintf(, x cos(x)\n') % title row
fprintf(, ---------------\n') % title row
    for x=-pi:pi/4:pi % loop_index=inital_value:increment_value:final_value
        y=cos(x); % code to calculate cos(x)
        fprintf(%%8.3f %8.2f \n',x,y); % code to print the output to screen
    end
```

Screen output:

x	$\cos (x)$
-----------142	-1.00
-3.1456	-0.71
-2.3571	0.00
-1.571	
-0.785	0.71
0.000	1.00
0.785	0.71
1.571	0.00
2.356	-0.71
3.142	-1.00

4.1.7.2 While Loop

Like the for loop, a while loop executes blocks of code over and over again however it runs as long as the test condition remains true. The syntax of a while loop is

```
while test_condition
    code
    ...
    code
end
```


Example 4.7

Using a while loop, calculate $y=\cos (x)$ for $-\pi \leq x \leq \pi$ using an increment of $\frac{\pi}{4}$.
This time we need to initialize the x value outside the loop and then state the test condition in the first line of the while loop. We also need to create an increment statement within the while loop:

```
x=-pi;
    while x<=pi
            y=cos(x);
                fprintf(%%8.3f %8.2f \n',x,y);
                x = x + (pi/4);
    end
```

The result is the same as that of the previous example:

-3.142	-1.00
-2.356	-0.71
-1.571	0.00
-0.785	0.71
0.000	1.00
0.785	0.71
1.571	0.00
2.356	-0.71
3.142	-1.00

Now we can improve the code by adding extra formatting lines and comments:

```
clear; clc;
fprintf(, x cos(x)\n') % title row
fprintf(, ---------------\n') % title row
x=-pi; % initiating the x value
while x<=pi % stating the test condition
    y=cos(x); % calculating the value of y
    fprintf('%8.3f %8.2f \n',x,y); % printing a and y
    x = x + (pi/4); % iterating to the next step
end
```

The result should look the same as before.

x	$\cos (\mathrm{x})$
---142	-1.00
-3.142	-0.0
-2.356	-0.71
-1.571	0.00
-0.785	0.71
0.000	1.00
0.785	0.71
1.571	0.00
2.356	-0.71
3.142	-1.00

4.1.8 The diary Function

Instead of writing a script from scratch, we sometimes solve problems in the Command Window as if we are using a scientific calculator. The steps we perform in this fashion can be used to create an m-file. For example, the diary function allows us to record a MATLAB session in a file and retrieve it for review. Reviewing the file and by copying relevant parts of it and pasting them in to an m-file, a script can be written easily.

Typing diary at the MATLAB prompt toggles the diary mode on and off. As soon as the diary mode is turned on, a file called diary is created in the current directory. If you like to save that file with a specific name, say for example problem16, type
\gg diary problem16.txt.
A file named problem16.txt will be created. The following is the content of a diary file called problem16.txt. Notice that in that session, the user is executing the four files we created earlier. The user's keyboard input and the resulting display output is recorded in the file. The session is ended by typing diary which is printed in the last line. This might be useful to create a record of your work to hand in with a lab or to create the beginnings of an m-file.

AcetyleneBottle
Vol_total =
0.4807

AcetyleneBottleInteractive
Enter the radius of acetylene bottle in meters . 3
Enter the height of cylinderical part of acetylene bottle in meters 1.5

Vol_total =
0.4807

AcetyleneBottleInteractiveDisp
This script computes the volume of an acetylene bottle
Enter the radius of acetylene bottle in meters . 5
Enter the height of cylinderical part of acetylene bottle in meters 1.6

The volume of the acetylene bottle is
1.5184

```
AcetyleneBottleInteractiveDisp1
This script computes the volume of an acetylene bottle:
Enter the radius of acetylene bottle in meters . }
Enter the height of cylinderical part of acetylene bottle in meters 1.9
The volume of the acetylene bottle is }6.3617\mathrm{ cubic meters.
diary
```


4.1.9 Style Guidelines

Try to apply the following guidelines when writing your scripts:

- Share your code or programs with others, consider adopting one of Creative Commons ${ }^{2}$ or GNU General Public License ${ }^{3}$ schemes
- Include your name and contact info in the opening lines
- Use comments liberally
- Group your code and use proper indentation
- Use white space liberally
- Use descriptive names for your variables
- Use descriptive names for your m-files

4.1.10 Summary of Key Points

1. A script is a file containing a sequence of MATLAB statements. Script files have a filename extension of .m.
2. Functions such as input, disp and num2str can be used to make scripts interactive,
3. fopen, fprintf and fclose functions are used to create output files,
4. A for loop is used to repeat a specific block of code a definite number of times.
5. A while loop is used to repeat a specific block of code an indefinite number of times, until a condition is met.
6. The diary function is useful to record a MATLAB command window session from which an m-file can be easily created,
7. Various style guidelines covered here help improve our code.

4.2 Problem Set ${ }^{4}$

Exercise 4.2.1

(Solution on p. 97.)
Write a script that will ask for pressure value in psi and display the equivalent pressure in kPa with a statement, such as "The converted pressure is: ..."

Exercise 4.2.2

(Solution on p. 97.)
Write a script that generates a table of conversions from Fahrenheit to Celsius temperatures for a range and increment entered by the user, such as

[^19]Enter the beginning temperature in F :
Enter the ending temperature in F :
Enter the increment value:

Test your script with 20 the beginning Fahrenheit value, 200 the ending Fahrenheit value and 20 the increment.
Exercise 4.2.3
(Solution on p. 98.)
Pascal's Law states that pressure is transmitted undiminished in all directions throughout a fluid at rest. (See the illustration below). An initial force of 150 N is transmitted from a piston of 25 $\mathrm{mm}^{\wedge} 2$ to a piston of $100 \mathrm{~mm}^{\wedge} 2$. This force is progressively increased up to 200 N . Write a script that computes the corresponding load carried by the larger piston and tabulate your results.

Figure 4.7: A simple hydraulic system.

Exercise 4.2.4

(Solution on p. 98.)
Modify your script in previous problem (Exercise 4.2.3) so that the user provides the following input:

Enter the initial force in N:
Enter the final force in N:
Enter the increment value:
Enter the area of small piston in $\mathrm{mm}^{\wedge} 2$:
Enter the area of big piston in $\mathrm{mm}^{\wedge} 2$:
Test your script with $150,200,10,25$ and 100 with respect to each input variable.
Exercise 4.2.5
(Solution on p. 99.)
Write a script to solve the Stress-Strain problem in the Problem Set (Problem 2.2.9)

Exercise 4.2.6

(Solution on p. 100.)
Modify the script, you wrote above (Exercise 4.2.5) and plot an annotated Stress-Strain graph.
Exercise 4.2.7
(Solution on p. 102.)
Repeat Problem 2 (Exercise 4.2.2), this time using a combination of disp, fprintf commands and a for loop.
Exercise 4.2.8
(Solution on p. 103.)
Repeat Problem 7 (Exercise 4.2.7), this time using a while loop.

Solutions to Exercises in Chapter 4

Solution to Exercise 4.2.1 (p. 94)

```
% This script converts pressures from psi to kPa
% User is prompted to enter pressure in psi
clc % Clear screen
disp('This script converts pressures from psi to kPa:')
disp(',') % Display blank line
psi=input('What is the pressure value in psi? ');
kPa=psi*6.894757; % Calculating pressure in kPa
disp(, ') % Display blank line
str = ['The converted pressure is: ', num2str(kPa), ' kPa.'];
disp(str);
```

The script output is as follows:

This script converts pressures from psi to kPa:
What is the pressure value in psi? 150
The converted pressure is: 1034.2135 kPa .
Solution to Exercise 4.2.2 (p. 94)

```
    % This script generates a table of conversions
% From Fahrenheit to Celsius temperatures
clc % Clear screen
disp('This script generates a table of conversions from Fahrenheit to Celsius')
disp(' ') % Display blank line
lowerF=input('Enter the beginning temperature in F: ');
upperF=input('Enter the ending temperature in F: ');
increment=input('Enter the increment value: ');
Fahrenheit=[lowerF:increment:upperF]; % Creating a row vector with F values
Celsius=5/9*(Fahrenheit-32); % Converting from F to C
disp(',') % Display blank line
str = ['Fahrenheit Celsius '];% Displaying table header
disp(str);
% Tabulating results in two columns, , is being used to transpose row to column
disp([Fahrenheit' Celsius'])
```

The script output is as follows:

```
This script generates a table of conversions from Fahrenheit to Celsius
Enter the beginning temperature in F: 20
Enter the ending temperature in F: 200
Enter the increment value: 20
```

Fahrenheit	Celsius
20.0000	-6.6667
40.0000	4.4444
60.0000	15.5556
80.0000	26.6667
100.0000	37.7778
120.0000	48.8889
140.0000	60.0000
160.0000	71.1111
180.0000	82.2222
200.0000	93.3333

Solution to Exercise 4.2.3 (p. 95)

```
% This script computes the load carried by the larger piston in a hydraulic system
clc % Clear screen
disp('This script computes the load carried by the larger piston in a hydraulic system')
disp(',') % Display blank line
initialF=150;
finalF=200;
increment=10;
area1=25;
area2=100;
F1=[initialF:increment:finalF]; % Creating a row vector with F1 values
F2=F1*area2/area1; % Calculating F2 values
disp(' ') % Display blank line
str = [' F1 F2 '];% Displaying table header
disp(str);
disp([F1' F2']) % Tabulating results in two columns, , is being used to transpose row to column
```

The script output is as follows:

This script computes the load carried by the larger piston in a hydraulic system

F1	F2
150	600
160	640
170	680
180	720
190	760
200	800

Solution to Exercise 4.2.4 (p. 95)

```
% This script computes the load carried by the larger piston in a hydraulic system
clc % Clear screen
disp('This script computes the load carried by the larger piston in a hydraulic system')
disp(' ') % Display blank line
```

```
initialF=input('Enter the initial force in N: ');
finalF=input('Enter the final force in N: ');
increment=input('Enter the increment value: ');
area1=input('Enter the area of small piston in mm^2: ');
area2=input('Enter the area of big piston in mm^2: ');
F1=[initialF:increment:finalF]; % Creating a row vector with F1 values
F2=F1*area2/area1; % Calculating F2 values
disp(' ') % Display blank line
str = [' F1 F2 '];% Displaying table header
disp(str);
disp([F1' F2']) % Tabulating results in two columns, , is being used to transpose row to column
```

The script output is as follows:

This script computes the load carried by the larger piston in a hydraulic system
Enter the initial force in N: 150
Enter the final force in N: 200
Enter the increment value: 10
Enter the area of small piston in mm^2: 25
Enter the area of big piston in $\mathrm{mm}^{\wedge} 2: 100$

F1	F2
150	600
160	640
170	680
180	720
190	760
200	800

Solution to Exercise 4.2 .5 (p. 95)
The m-file contains the following:
\% This script uses readings from a Tensile test and
\% Computes Strain and Stress values
clc $\%$ Clear screen
disp('This script uses readings from a Tensile test and')
disp('Computes Strain and Stress values')
disp(' ') \% Display a blank line
Specimen_dia=12.7; \% Specimen diameter in mm
\% Load in kN
Load_kN=[0;4.89;9.779;14.67;19.56;24.45; ...
$27.62 ; 29.39 ; 32.68 ; 33.95 ; 34.58 ; 35.22 ; .$.
$35.72 ; 40.54 ; 48.39 ; 59.03 ; 65.87 ; 69.42 ; \ldots$
69.67;68.15;60.81];
\% Gage length in mm
Length_mm=[50.8;50.8102;50.8203;50.8305; ...
50.8406;50.8508;50.8610;50.8711; ...
50.9016;50.9270;50.9524;50.9778;...
51.0032;51.816;53.340;55.880;58.420; ...
60.96;61.468;63.5;66.04];

```
% Calculate x-sectional area im m2
Cross_sectional_Area=pi/4*((Specimen_dia/1000)^2);
% Calculate change in length, initial lenght is 50.8 mm
Delta_L=Length_mm-50.8;
% Calculate Stress in MPa
Sigma=(Load_kN./Cross_sectional_Area)*10^(-3);
% Calculate Strain in mm/mm
Epsilon=Delta_L./50.8;
str = ['Specimen diameter is ', num2str(Specimen_dia), ' mm.'];
disp(str);
Results=[Load_kN Length_mm Delta_L Sigma Epsilon];
% Tabulated results
disp(' Load Length Delta L Stress Strain')
disp(Results)
```

After executed, the command window output is:

This script uses readings from a Tensile test and Computes Strain and Stress values

Specimen diameter is 12.7 mm .

Load	Length	Delta L	Stress	Strain
0	50.8000	0	0	0
4.8900	50.8102	0.0102	38.6022	0.0002
9.7790	50.8203	0.0203	77.1964	0.0004
14.6700	50.8305	0.0305	115.8065	0.0006
19.5600	50.8406	0.0406	154.4086	0.0008
24.4500	50.8508	0.0508	193.0108	0.0010
27.6200	50.8610	0.0610	218.0351	0.0012
29.3900	50.8711	0.0711	232.0076	0.0014
32.6800	50.9016	0.1016	257.9792	0.0020
33.9500	50.9270	0.1270	268.0047	0.0025
34.5800	50.9524	0.1524	272.9780	0.0030
35.2200	50.9778	0.1778	278.0302	0.0035
35.7200	51.0032	0.2032	281.9773	0.0040
40.5400	51.8160	1.0160	320.0269	0.0200
48.3900	53.3400	2.5400	381.9955	0.0500
59.0300	55.8800	5.0800	465.9888	0.1000
65.8700	58.4200	7.6200	519.9844	0.1500
69.4200	60.9600	10.1600	548.0085	0.2000
69.6700	61.4680	10.6680	549.9820	0.2100
68.1500	63.5000	12.7000	537.9830	0.2500
60.8100	66.0400	15.2400	480.0403	0.3000

Solution to Exercise 4.2 .6 (p. 96)
Edited script contains the plot commands:

```
% This script uses readings from a Tensile test and
% Computes Strain and Stress values
clc
                    % Clear screen
disp('This script uses readings from a Tensile test and')
```

```
disp('Computes Strain and Stress values')
disp(',') % Display a blank line
Specimen_dia=12.7; % Specimen diameter in mm
% Load in kN
Load_kN=[0;4.89;9.779;14.67;19.56;24.45;...
    27.62;29.39;32.68;33.95;34.58;35.22;...
    35.72;40.54;48.39;59.03;65.87;69.42;...
    69.67;68.15;60.81];
% Gage length in mm
Length_mm=[50.8;50.8102;50.8203;50.8305; ...
    50.8406;50.8508;50.8610;50.8711;...
    50.9016;50.9270;50.9524;50.9778;...
    51.0032;51.816;53.340;55.880;58.420;...
    60.96;61.468;63.5;66.04];
% Calculate x-sectional area im m2
Cross_sectional_Area=pi/4*((Specimen_dia/1000)^2);
% Calculate change in length, initial lenght is 50.8 mm
Delta_L=Length_mm-50.8;
% Calculate Stress in MPa
Sigma=(Load_kN./Cross_sectional_Area)*10^(-3);
% Calculate Strain in mm/mm
Epsilon=Delta_L./50.8;
str = ['Specimen diameter is ', num2str(Specimen_dia), ' mm.'];
disp(str);
Results=[Load_kN Length_mm Delta_L Sigma Epsilon];
% Tabulated results
disp(' Load Length Delta L Stress Strain')
disp(Results)
% Plot Stress versus Strain
plot(Epsilon,Sigma)
title('Stress versus Strain Curve')
xlabel('Strain [mm/mm]')
ylabel('Stress [mPa]')
grid
In addition to Command Window output, the following plot is generated:
```


Solution to Exercise 4.2 .7 (p. 96)
The re-worked solution:

```
% This script generates a table of conversions
% From Fahrenheit to Celsius temperatures
clear % removes all variables from the current workspace,
clc % clears all input and output from the Command Window display,
disp('This script generates a table of conversions from Fahrenheit to Celsius')
disp(',) % Display blank line
lowerF=input('Enter the initial temperature in F: ');
upperF=input('Enter the final temperature in F: ');
increment=input('Enter the increment value: ');
disp(' ') % Display blank line
fprintf('Fahrenheit Celsius\n') % title row
fprintf('-----------------\n') % title row
for Fahrenheit=[lowerF:increment:upperF]; % Creating a row vector with F values
    Celsius=5/9*(Fahrenheit-32); % Converting from F to C
    fprintf(%%8.3f %8.3f \n',Fahrenheit,Celsius); % Tabulating results in two columns
end
```

After executed, the command window output is:

This script generates a table of conversions from Fahrenheit to Celsius

Solution to Exercise 4.2 .8 (p. 96)

The re-worked solution:

```
% This script generates a table of conversions
% From Fahrenheit to Celsius temperatures
clear % removes all variables from the current workspace,
clc % clears all input and output from the Command Window display,
disp('This script generates a table of conversions from Fahrenheit to Celsius')
disp(' ') % Display blank line
lowerF=input('Enter the initial temperature in F: ');
upperF=input('Enter the final temperature in F: ');
increment=input('Enter the increment value: ');
disp(',') % Display blank line
fprintf('Fahrenheit Celsius\n') % title row
fprintf('-----------------\n') % title row
Fahrenheit=lowerF;
    while Fahrenheit<=upperF
        Celsius=5/9*(Fahrenheit-32); % Converting from F to C
        fprintf(%%8.3f %8.3f \n',Fahrenheit,Celsius); % Tabulating results in two columns
        Fahrenheit=Fahrenheit+increment;
    end
```

After executed, the command window output is:

```
This script generates a table of conversions from Fahrenheit to Celsius
Enter the initial temperature in F: 20
Enter the final temperature in F: }20
Enter the increment value: 20
Fahrenheit Celsius
------------------
    20.000 -6.667
    40.000 4.444
```

60.000	15.556
80.000	26.667
100.000	37.778
120.000	48.889
140.000	60.000
160.000	71.111
180.000	82.222
200.000	93.333

Chapter 5

Interpolation

5.1 Interpolation ${ }^{1}$

Linear interpolation is one of the most common techniques for estimating values between two given data points. For example, when using steam tables, we often have to carry out interpolations. With this technique, we assume that the function between the two points is linear. MATLAB has a built-in interpolation function.

[^20]
5.1.1 The interp1 Function

Give an $\mathrm{x}-\mathrm{y}$ table, $\mathrm{y} _$new $=$interp1 ($\mathrm{x}, \mathrm{y}, \mathrm{x}$ _new) interpolates to find $\mathrm{y} _$new. Consider the following examples:

Example 5.1

To demonstrate how the interp1 function works, let us create an $\mathrm{x}-\mathrm{y}$ table with the following commands;
$\mathrm{x}=0: 5$;
$y=[0,20,60,68,77,110]$;
To tabulate the output, we can use
[$\left.x^{\prime}, y^{\prime}\right]$
The result is
ans =
00
20
60
68
77
110
Suppose we want to find the corresponding value for 1.5 or interpolate for 1.5. Using y_new = interp1(x, Y, x_new) syntax, let us type in:
y_new=interp1 (x,y,1.5)
y_new =
40

Example 5.2
The table we created above has only 6 elements in it and suppose we need a more detailed table. In order to do that, instead of a single new x value, we can define an array of new x values, the interp 1 function returns an array of new y values:
new_x = 0:0.2:5;
new_y $=$ interp1 (x, y, new_x) ;
Let's display this table
[new_x', new_y']
The result is
ans $=$

0	0
0.2000	4.0000
0.4000	8.0000
0.6000	12.0000
0.8000	16.0000
1.0000	20.0000
1.2000	28.0000
1.4000	36.0000
1.6000	44.0000
1.8000	52.0000
2.0000	60.0000
2.2000	61.6000
2.4000	63.2000
2.6000	64.8000
2.8000	66.4000
3.0000	68.0000
3.2000	69.8000
3.4000	71.6000
3.6000	73.4000
3.8000	75.2000
4.0000	77.0000
4.2000	83.6000
4.4000	90.2000
4.6000	96.8000
4.8000	103.4000
5.0000	110.0000

Example 5.3

Using the table below, find the internal energy of steam at $215{ }^{\circ} \mathrm{C}$ and the temperature if the internal energy is $2600 \mathrm{~kJ} / \mathrm{kg}$ (use linear interpolation).

Temperature [C]	Internal Energy [kJ /kg]
100	2506.7
150	2582.8
200	2658.1
250	2733.7
300	2810.4
400	2967.9
500	3131.6

Table 5.1: An extract from Steam Tables
First let us enter the temperature and energy values

```
    temperature = [100, 150, 200, 250, 300, 400, 500];
energy = [2506.7, 2582.8, 2658.1, 2733.7, 2810.4, 2967.9, 3131.6];
[temperature',energy']
```

```
    returns
ans =
    1.0e+003 *
    0.1000 2.5067
    0.1500 2.5828
    0.2000 2.6581
    0.2500 2.7337
    0.3000 2.8104
    0.4000 2.9679
    0.5000 3.1316
issue the following for the first question:
new_energy = interp1(temperature,energy,215)
    returns
new_energy =
    2.6808e+003
Now, type in the following for the second question:
new_temperature = interp1(energy,temperature, 2600)
    returns
new_temperature =
    161.4210
```


5.1.2 Summary of Key Points

1. Linear interpolation is a technique for estimating values between two given data points,
2. Problems involving steam tables often require interpolated data,
3. MATLAB has a built-in interpolation function.

5.2 Problem Set ${ }^{2}$

Exercise 5.2.1
(Solution on p. 111.)
Determine the saturation temperature, specific liquid enthalpy, specific enthalpy of evaporation and specific enthalpy of dry steam at a pressure of 2.04 MPa .

[^21]| Pressure $\left[\mathbf{M N} / \mathbf{m}^{\mathbf{2}}\right]$ | Saturation Temperature $[\mathbf{C}]$ | $\mathbf{h}_{\mathbf{f}}[\mathbf{k J} / \mathbf{k g}]$ | $\mathbf{h}_{\mathbf{f g}}[\mathbf{k J} / \mathbf{k g}]$ | $\mathbf{h}_{\mathbf{g}}[\mathbf{k J} / \mathbf{k g}]$ |
| :--- | :--- | :--- | :--- | :--- |
| 2.1 | 214.9 | 920.0 | 1878.2 | 2798.2 |
| 2.0 | 212.4 | 908.6 | 1888.6 | 2797.2 |

Table 5.2: An extract from steam tables

Exercise 5.2.2

(Solution on p. 111.)
The following table gives data for the specific heat as it changes with temperature for a perfect gas. (Data available for download ${ }^{3}$). ${ }^{4}$

Temperature [F]	Specific Heat [BTU/lbmF]
25	0.118
50	0.120
75	0.123
100	0.125
125	0.128
150	0.131

Table 5.3: Change of specific heat with temperature
Using interp1 function calculate the specific heat for $30 \mathrm{~F}, 70 \mathrm{~F}$ and 145 F .

Exercise 5.2.3

(Solution on p. 112.)
For the problem above (Exercise 5.2.2), create a more detailed table in which temperature varies between 25 and 150 with 5 F increments and corresponding specific heat values.
Exercise 5.2.4
(Solution on p. 113.)
During a 12-hour shift a fuel tank has varying levels due to consumption and transfer pump automatically cutting in and out to maintain a safe fuel level. The following table of fuel tank level versus time (Data available for download ${ }^{5}$) is missing readings for 5 and 9 AM. Using linear interpolation, estimate the fuel level at those times.

[^22]| Time [hours, AM] | Tank level [m] |
| :--- | :--- |
| $1: 00$ | 1.5 |
| $2: 00$ | 1.7 |
| $3: 00$ | 2.3 |
| $4: 00$ | 2.9 |
| $5: 00$ | $?$ |
| $6: 00$ | 2.6 |
| $7: 00$ | 2.5 |
| $8: 00$ | 2.3 |
| $9: 00$ | $?$ |
| $10: 00$ | 2.0 |
| $11: 00$ | 1.8 |
| $12: 00$ | 1.3 |

Table 5.4: Fuel tank level versus time

Solutions to Exercises in Chapter 5

```
Solution to Exercise 5.2.1 (p. 108)
    MATLAB solution is as follows;
```

```
    > pressure=[l2.1 2.0];
```

 > pressure=[l2.1 2.0];
 > sat_temp=[[214.9 212.4];
> sat_temp=[[214.9 212.4];
h_f=[920 908.6];
h_f=[920 908.6];
h_fg=[1878.2 1888.6];
h_fg=[1878.2 1888.6];
h_g=[2798.2 2797.2];
h_g=[2798.2 2797.2];
> sat_temp_new=interp1(pressure,sat_temp,2.04)
> sat_temp_new=interp1(pressure,sat_temp,2.04)
sat_temp_new =
sat_temp_new =
213.4000
> h_f_new=interp1(pressure,h_f,2.04)
h_f_new =
913.1600
> h_fg_new=interp1(pressure,h_fg,2.04)
h_fg_new =
1.8844e+003
M h_g_new=interp1(pressure,h_g, 2.04)
h_g_new =
2.7976e+003

```
Solution to Exercise 5.2.2 (p. 109)
    MATLAB solution is as follows:
    \(\gg\) temperature \(=[25 ; 50 ; 75 ; 100 ; 125 ; 150]\)
temperature =
    25
    50
    75
    100
    125
    150
\(\gg\) specific_heat=[.118;.120;.123;.125;.128;.131]
specific_heat =
```

 0.1180
 0.1200
 0.1230
 0.1250
 0.1280
 0.1310
 > specific_heatAt30=interp1(temperature,specific_heat,30)
specific_heatAt30 =
0.1184
>specific_heatAt70=interp1(temperature,specific_heat,70)
specific_heatAt70 =
0.1224
> specific_heatAt145=interp1(temperature,specific_heat,145)
specific_heatAt145 =
0.1304

```

Solution to Exercise 5.2.3 (p. 109)
MATLAB solution is as follows:
```

 > new_temperature=25:5:150;
 new_specific_heat=interp1(temperature,specific_heat,new_temperature);
> [new_temperature',new_specific_heat']
ans =

25.0000	0.1180
30.0000	0.1184
35.0000	0.1188
40.0000	0.1192
45.0000	0.1196
50.0000	0.1200
55.0000	0.1206
60.0000	0.1212
65.0000	0.1218
70.0000	0.1224
75.0000	0.1230
80.0000	0.1234
85.0000	0.1238
90.0000	0.1242
95.0000	0.1246
100.0000	0.1250
105.0000	0.1256
110.0000	0.1262

```
\begin{tabular}{ll}
115.0000 & 0.1268 \\
120.0000 & 0.1274 \\
125.0000 & 0.1280 \\
130.0000 & 0.1286 \\
135.0000 & 0.1292 \\
140.0000 & 0.1298 \\
145.0000 & 0.1304 \\
150.0000 & 0.1310
\end{tabular}

Solution to Exercise 5.2.4 (p. 109)
```

 > time=[lllllllllllll}
 >tank_level=[ll.5 1.7 2.3 2.9 2.6 2.5 2.3 2.0 1.8 1.3];
> tank_level_at_5=interp1(time,tank_level,5)
tank_level_at_5 =
2.7500

tank_level_at_9=interp1(time,tank_level,9)

tank_level_at_9 =
2.1500

```

\section*{Chapter 6}

\section*{Numerical Integration}

\subsection*{6.1 Computing the Area Under a Curve \({ }^{1}\)}


This chapter essentially deals with the problem of computing the area under a curve. First, we will employ a basic approach and form trapezoids under a curve. From these trapezoids, we can calculate the total area under a given curve. This method can be tedious and is prone to errors, so in the second half of the chapter, we will utilize a built-in MATLAB function to carry out numerical integration.

\footnotetext{
\({ }^{1}\) This content is available online at <http://cnx.org/content/m41454/1.5/>.
}

\subsection*{6.1.1 A Basic Approach}

There are various methods to calculating the area under a curve, for example, Rectangle Method \({ }^{2}\), Trapezoidal Rule \({ }^{3}\) and Simpson's Rule \({ }^{4}\). The following procedure is a simplified method.

Consider the curve below:


Figure 6.1: Numerical integration

Each segment under the curve can be calculated as follows:
\[
\begin{equation*}
\frac{1}{2}\left(y_{0}+y_{1}\right) \Delta \mathrm{x}+\frac{1}{2}\left(y_{1}+y_{2}\right) \Delta \mathrm{x}+\frac{1}{2}\left(y_{2}+y_{3}\right) \Delta \mathrm{x} \tag{6.1}
\end{equation*}
\]

Therefore, if we take the sum of the area of each trapezoid, given the limits, we calculate the total area under a curve. Consider the following example.

\section*{Example 6.1}

Given the following data, plot an \(x-y\) graph and determine the area under a curve between \(x=3\) and \(\mathrm{x}=30\)
\begin{tabular}{|l|l|l|}
\hline Index & \(\mathbf{x}[\mathbf{m}]\) & \(\mathbf{y}[\mathbf{N}]\) \\
\hline 1 & 3 & 27.00 \\
\hline 2 & 10 & 14.50 \\
\hline 3 & 15 & 9.40 \\
\hline 4 & 20 & 6.70 \\
\hline 5 & 25 & 5.30 \\
\hline 6 & 30 & 4.50 \\
\hline
\end{tabular}

Table 6.1: Data Set
First, let us enter the data set. For x , issue the following command \(\mathrm{x}=[3,10,15,20,25,30]\); And for y , \(\mathrm{y}=[27,14.5,9.4,6.7,5.3,4.5]\); If yu type in [ \(\mathrm{x}^{\prime}, \mathrm{y}\) '], you will see the following tabulated result. Here we transpose row vectors with ' and displaying them as columns:

\footnotetext{
\({ }^{2}\) http://en.wikipedia.org/wiki/Rectangle_method
\({ }^{3} \mathrm{http}: / / \mathrm{en}\). wikipedia.org/wiki/Trapezoidal_rule
\({ }^{4}\) http://en.wikipedia.org/wiki/Simpson\%27s_rule
}
ans \(=\)
\(3.0000 \quad 27.0000\)
\(10.0000 \quad 14.5000\)
\(15.0000 \quad 9.4000\)
\(20.0000 \quad 6.7000\)
\(25.0000 \quad 5.3000\)
\(30.0000 \quad 4.5000\)
Compare the data set above with the given information in the question (Table 6.1).
To plot the data type the following:
plot(x,y),title('Distance-Force Graph'), xlabel('Distance[m]'), ylabel('Force[N]'),grid
The following figure is generated:


Figure 6.2: Distance-Force Graph

To compute dx for consecutive x values, we will use the index for each x value, see the given data in the question (Table 6.1).:
\(d x=[x(2)-x(1), x(3)-x(2), x(4)-x(3), x(5)-x(4), x(6)-x(5)] ;\)
dy is computed by the following command:
\(d y=[0.5 *(y(2)+y(1)), 0.5 *(y(3)+y(2)), 0.5 *(y(4)+y(3)), 0.5 *(y(5)+y(4)), 0.5 *(y(6)+y(5))] ;\)
\(d x\) and dy can be displayed with the following command: [dx', \(\mathrm{dy}^{\prime}\) ]. The result will look like this:
```

 [dx',dy']
 ans =
7.0000 20.7500
5.0000 11.9500
5.0000 8.0500
5.0000 6.0000
5.0000 4.9000

```

Our results so far are shown below
\begin{tabular}{|l|l|l|l|}
\hline \(\mathbf{x}[\mathbf{m}]\) & \(\mathbf{y}[\mathbf{N}]\) & \(\mathbf{d x}[\mathbf{m}]\) & \(\mathbf{d y}[\mathbf{N}]\) \\
\hline 3 & 27.00 & & \\
\hline 10 & 14.50 & 7.00 & 20.75 \\
\hline 15 & 9.40 & 5.00 & 11.95 \\
\hline 20 & 6.70 & 5.00 & 8.05 \\
\hline 25 & 5.30 & 5.00 & 6.00 \\
\hline 30 & 4.50 & 5.00 & 4.90 \\
\hline
\end{tabular}

Table 6.2: x , y and corresponding differential elements
If we multiply \(d x\) by \(d y\), we find da for each element under the curve. The differential area \(\mathrm{da}=\mathrm{dx*} \mathrm{dy}\), can be computed using the 'term by term multiplication' technique in MATLAB as follows:
\(d a=d x . * d y\)
```

da =

```
\(145.2500 \quad 59.7500 \quad 40.2500 \quad 30.0000 \quad 24.5000\)
Each value above represents an element under the curve or the area of trapezoid. By taking the sum of array elements, we find the total area under the curve.
```

 sum(da)
    ```
ans =
299.7500

The following (Table 6.3) illustrates all the steps and results of our MATLAB computation.
\begin{tabular}{|l|l|l|l|l|}
\hline \(\mathbf{x}[\mathbf{m}]\) & \(\mathbf{y}[\mathbf{N}]\) & \(\mathbf{d x}[\mathbf{m}]\) & \(\mathbf{d y}[\mathbf{N}]\) & \(\mathbf{d A}[\mathbf{N m}]\) \\
\hline 3 & 27.00 & & & \\
\hline 10 & 14.50 & 7.00 & 20.75 & 145.25 \\
\hline 15 & 9.40 & 5.00 & 11.95 & 59.75 \\
\hline 20 & 6.70 & 5.00 & 8.05 & 40.25 \\
\hline 25 & 5.30 & 5.00 & 6.00 & 30.00 \\
\hline 30 & 4.50 & 5.00 & 4.90 & 24.50 \\
\hline & & & & 299.75 \\
\hline
\end{tabular}

Table 6.3: Computation of the approximate area under a curve

\subsection*{6.1.2 The Trapezoidal Rule}

Sometimes it is rather convenient to use a numerical approach to solve a definite integral. The trapezoid rule allows us to approximate a definite integral using trapezoids.

\subsection*{6.1.2.1 The trapz Command}
\(\mathrm{Z}=\operatorname{trapz}(\mathrm{Y})\) computes an approximation of the integral of Y using the trapezoidal method.
Now, let us see a typical problem.
Example 6.2
Given Area \(=\int_{2}^{5} x^{2} d x\), an analytical solution would produce 39 . Use trapz command and solve it
1. Initialize variable \(x\) as a row vector, from 2 with increments of 0.1 to \(5: x=2: .1: 5\);
2. Declare variable \(y\) as \(y=x^{\wedge} 2\);. Note the following error prompt: ??? Error using \(==>\) mpower Inputs must be a scalar and a square matrix. This is because x is a vector quantity and MATLAB is expecting a scalar input for \(y\). Because of that, we need to compute \(y\) as a vector and to do that we will use the dot operator as follows: \(\mathrm{y}=\mathrm{x} .{ }^{\wedge} 2\); . This tells MATLAB to create vector y by taking each x value and raising its power to 2 .
3. Now we can issue the following command to calculate the first area, the output will be as follows:
```

 area1=trapz(x,y)
    ```
area1 =
39.0050

Notice that this numerical value is slightly off. So let us increase the number of increments and calculate the area again:
\(\mathrm{x}=2: .01: 5\);
\(y=x . \sim 2\);
\(\operatorname{area} 2=\operatorname{trapz}(\mathrm{x}, \mathrm{y})\)
area2 =
39.0001

Yet another increase in the number of increments:
```

 x=2:.001:5;
    ```
\(y=x . \sim 2\);
\(\operatorname{area} 3=\operatorname{trapz}(\mathrm{x}, \mathrm{y})\)
area3 =
39.0000

\section*{Example 6.3}

Determine the value of the following integral:
\[
\int_{0}^{\pi} \sin (x) d x
\]
1. Initialize variable x as a row vector, from 0 with increments of \(\mathrm{pi} / 100\) to \(\mathrm{pi}: \mathrm{x}=0: \mathrm{pi} / 100: \mathrm{pi}\);
2. Declare variable \(y\) as \(y=\sin (x)\);
3. Issue the following command to calculate the first area, the output will be as follows:
\(\operatorname{area} 1=\operatorname{trapz}(\mathrm{x}, \mathrm{y})\)
area1 =

\subsection*{1.9998}
let us increase the increments as above:
\(\mathrm{x}=0: \mathrm{pi} / 1000: \mathrm{pi}\);
\(y=\sin (x)\);
\(\operatorname{area} 2=\operatorname{trapz}(\mathrm{x}, \mathrm{y})\)
area2 =
2.0000

\section*{Example 6.4}

A gas expands according to the law, \(\mathrm{PV}^{1.4}=\mathrm{c}\). Initially, the pressure is 100 kPa when the volume is \(1 \mathrm{~m}^{3}\). Write a script to compute the work done by the gas in expanding to three times its original volume \({ }^{5}\).

Recall that PV diagrams can be used to estimate the net work performed by a thermodynamic cycle, see Wikipedia \({ }^{6}\) or we can use definite integral to compute the work done (WD) as follows:
\[
\begin{equation*}
\mathrm{WD}=\int p d v \tag{6.2}
\end{equation*}
\]

If we rearrange the expression pressure as a function of volume, we get:
\[
\begin{equation*}
P=\frac{c}{V^{1.4}} \tag{6.3}
\end{equation*}
\]

By considering the initial state, we can determine the value of \(c\) :
\[
\begin{align*}
c & =100 \times 1^{1.4}  \tag{6.4}\\
& =100
\end{align*}
\]

\footnotetext{
\({ }^{5}\) O. N. Mathematics: 2 by J. Dobinson, Penguin Library of Technology. © 1969, (p. 184)
\({ }^{6}\) http://en.wikipedia.org/wiki/Pressure _volume_diagram\#Thermodynamics
}

From the equation (6.3) and the equation (6.4) above, we can write:
\[
\begin{equation*}
P=\frac{100}{V^{1.4}} \tag{6.5}
\end{equation*}
\]

By inserting P (6.5) in WD (6.2), we get:
\[
\begin{equation*}
\mathrm{WD}=\int_{1}^{3} \frac{100}{v^{1.4}} d v \tag{6.6}
\end{equation*}
\]

For MATLAB solution, we will consider P as a function of V (6.5) and WD (6.6). Now, let us apply the three-step approach we have used earlier:
1. Initialize variable volume as a row vector, from 1 with increments of 0.001 to \(3: \mathrm{v}=1: 0.001: 3\);
2. Declare variable pressure as \(\mathrm{p}=100 . / \mathrm{v} . \wedge 1.4\);
3. Use the trapz function to calculate the work done, the output will be as follows:
```

 WorkDone=trapz(v,p)
 WorkDone =

```
    88.9015

These steps can be combined in an m-file as follows:
```

 clc
 disp('A gas expands according to the law, pv^1.4=C')
disp('Initial pressure is 100 kPa when the volume is 1 m3')
disp('Compute the work done by the gas in expanding')
disp('To three times its original volume')
disp(',') % Display blank line
v=1:.001:3; % Creating a row vector for volume, v
p=100./(v.^1.4); % Computing pressure for volume
WorkDone=trapz(v,p) % Integrating p*dv over 1 to 3 cubic meters

```

\section*{Example 6.5}

A body moves from rest under the action of a direct force given by \(F=\frac{15}{x+3}\) where x is the distance in meters from the starting point. Write a script to compute the total work done in moving a distance \(10 \mathrm{~m} .{ }^{7}\)

Recall that the general definition of mechanical work is given by the following integral, see Wikipedia \({ }^{8}\) :
\[
\begin{equation*}
\mathrm{WD}=\int F d x \tag{6.7}
\end{equation*}
\]

Therefore we can write:
\[
\begin{equation*}
\mathrm{WD}=\int_{0}^{10} \frac{15}{x+3} d x \tag{6.8}
\end{equation*}
\]

Applying the steps we followed in the previous examples, we write:

\footnotetext{
\({ }^{7}\) O. N. Mathematics: 2 by J. Dobinson, Penguin Library of Technology. © 1969, (p. 183)
\({ }^{8}\) http://en.wikipedia.org/wiki/Work_\%28physics\%29\#Force_and_displacement
}
```

 clc
 disp('A body moves from rest under the action of a direct force given')
disp('by F=15/(x+3) where x is the distance in meters')
disp('From the starting point.')
disp('Compute the total work done in moving a distance 10 m.')
disp(', ') % Display blank line
x=0:.001:10; % Creating a row vector for distance, x
F=15./(x+3); % Computing Force for x
WorkDone=trapz(x,F) % Integrating F*dx over 0 to 10 meters.

```

The output of the above code is:
A body moves from rest under the action of a direct force given
by \(F=15 /(x+3)\) where \(x\) is the distance in meters
From the starting point.
Compute the total work done in moving a distance 10 m .
WorkDone =
21.9951

\subsection*{6.1.3 The integral Function}

As we have seen earlier, trapz gives a good approximation for definite integrals. The integral function streamlines numerical integration even further. Before we learn about integral function, first we will look at anonymous functions.

\subsection*{6.1.3.1 Anonymous Functions}

An anonymous function is a function that can be defined in the command window (i.e. it does not need to be stored in a program file). Anonymous functions can accept inputs and return outputs, just as standard functions do such as sqrt(X) or \(\log (X)\).

To define an anonymous function, first we create a handle with @(x) and type in the function: myfunction=@(x) \(x^{\wedge} 2+1\).

If you want to evaluate myfunction at 1 , just type in \(a=\) myfunction(1) at the command window and you get the result of 2 .

\section*{Syntax for integral}

To evaluate an integral from a minimum to a maximum value, we specify a function and its minimum and maximum \(Z=\) integral(fun, \(x \min , x \max\) ).

Example 6.6
Given \(\mathrm{y}=\mathrm{x}^{\wedge} 2\), evaluate the integral from \(\mathrm{x}=2\) to \(\mathrm{x}=5\) as we have done it with trapz (Example 6.2) command.
1. Define function myfunction=@(x) x. \({ }^{\wedge} 2\);
2. Apply the syntax to myfunction as follows \(Z=\) integral(myfunction, 2,5 )
3. You should get a result of \(Z=39\).

ASIDE: Notice that, unlike in trapz (Example 6.2) example, we did not need to define a vector and change the increments to get an accurate result.

\subsection*{6.1.4 Summary of Key Points}
1. In its simplest form, numerical integration involves calculating the areas of segments that make up the area under a curve,
2. MATLAB has built-in functions to perform numerical integration,
3. \(Z=\operatorname{trapz}(Y)\) computes an approximation of the integral of \(Y\) using the trapezoidal method.
4. Anonymous functions are inline statements that we can define with @(x),
5. \(Z=\) integral (fun, \(x \min , x \max\) ) numerically integrates function fun from \(x m\) in to xmax.

\subsection*{6.2 Problem Set \({ }^{9}\)}

\section*{Exercise 6.2.1}
(Solution on p. 125.)
Let the function y defined by \(y=\cos (x)\). Plot this function over the interval [-pi,pi]. Use numerical integration techniques to estimate the integral of \(y\) over \([0, \mathrm{pi} / 2]\) using increments of pi / 10 and pi/1000.

\section*{Exercise 6.2.2}
(Solution on p. 125.)
Let the function y defined by \(y=0.04 x^{2}-2.13 x+32.58\). Plot this function over the interval \([3,30]\). Use numerical integration techniques to estimate the integral of y over [3,30].

\section*{Exercise 6.2.3}
(Solution on p. 125.)
A 2000-liter tank is full of lube oil. It is known that if lube oil is drained from the tank, the mass flow rate will decrease from the maximum when the tank level is at the highest. The following data were collected when the tank was drained.
\begin{tabular}{|l|l|}
\hline Time [min] & Mass Flow [kg/min] \\
\hline 0 & 50.00 \\
\hline 5 & 48.25 \\
\hline 10 & 46.00 \\
\hline 15 & 42.50 \\
\hline 20 & 37.50 \\
\hline 25 & 30.50 \\
\hline 30 & 19.00 \\
\hline 35 & 9.00 \\
\hline
\end{tabular}

Table 6.4: Data
Write a script to estimate the amount of oil drained in 35 minutes.

\section*{Exercise 6.2.4}
(Solution on p. 126.)
A gas is expanded in an engine cylinder, following the law \(\mathrm{PV}^{1.3}=\mathrm{c}\). The initial pressure is 2550 kPa and the final pressure is 210 kPa . If the volume at the end of expansion is \(0.75 \mathrm{~m}^{3}\), compute the work done by the gas. \({ }^{10}\)

\section*{Exercise 6.2.5}
(Solution on p. 127.)
A force F acting on a body at a distance s from a fixed point is given by \(F=3 s+\frac{1}{s^{2}}\). Write a script to compute the work done when the body moves from the position where \(s=1\) to that where \(\mathrm{s}=10 .{ }^{11}\)

\footnotetext{
\({ }^{9}\) This content is available online at <http://cnx.org/content/m41541/1.9/>.
\({ }^{10}\) Applied Heat for Engineers by W. Embleton and L Jackson, Thomas Reed Publications. (C) 1999, (p. 80)
\({ }^{11}\) O. N. Mathematics: 2 by J. Dobinson, Penguin Library of Technology. © 1969, (p. 213)
}

\section*{Exercise 6.2.6}
(Solution on p. 127.)
The pressure p and volume v of a given mass of gas are connected by the relation \(\left(p+\frac{a}{v^{2}}\right)(v-b)=k\) where \(\mathrm{a}, \mathrm{b}\) and k are constants. Express p in terms of v , and write a script to compute the work done by the gas in expanding from an initial volume to a final volume. 12

Test your solution with the following input:
a: 0.01
b: 0.001
The initial pressure [kPa]: 100
The initial volume [m3]: 1
The final volume [m3]: 2

\footnotetext{
\({ }^{12}\) O. N. Mathematics: 2 by J. Dobinson, Penguin Library of Technology. © 1969, (p. 212)
}

\section*{Solutions to Exercises in Chapter 6}

Solution to Exercise 6.2.1 (p. 123)
1. Plotting:
x=-pi:pi/100:pi;
\(y=\cos (x)\);
plot( \(x, y\) ), title('Graph of \(y=\cos (x)\) '), xlabel('x'),ylabel('y'), grid
2. Area calculation 1:
```

 > =0:pi/10:pi/2;
 y=cos(x);
area1=trapz(x,y)
area1 =
0.9918

```
3. Area calculation 2:
```

 > x=0:pi/1000:pi/2;
 y=cos(x);
> area2=trapz(x,y)
area2 =
1.0000

```

Solution to Exercise 6.2.2 (p. 123)
1. Plotting:
```

 >x=3:.1:30;
 y=0.04*(x.^2)-2.13.*x+32.58;
plot(x,y), title('Graph of ...
y=.04*(x^2)-2.13*x+32.58'),xlabel('x'),ylabel('y'),grid

```
2. Area calculation:
```

Marea=trapz(x,y)
area =

```
    290.3868

Solution to Exercise 6.2.3 (p. 123)
clc
```

t=linspace(0,35,8) % Data entry for time [min]
m=[50 48.25 46 42.5 37.5 30.5 19 9] % Data entry for mass flow [kg/min]
% Calculate time intervals
dt=[t(2)-t(1),t(3)-t(2),t(4)-t(3),···

```
```

t(5)-t(4),t(6)-t(5),t(7)-t(6),t(8)-t(7)]
% Calculate mass out
dm=[0.5*(m(2)+m(1)),0.5*(m(3)+m(2)),0.5*(m(4)+m(3)),0.5*(m(5)+...
m(4)),0.5*(m(6)+m(5)),0.5*(m(7)+m(6)),0.5*(m(8)+m(7))]
% Calculate differential areas
da=dt.*dm;
% Tabulate time and mass flow
[t',m']
% Tabulate time intervals, mass out and differential areas
[dt',dm',da']
% Calculate the amount of oil drained [kg] in 35 minutes
Oil_Drained=sum(da)

```

The output is:
```

ans =
0 50.0000
5.0000 48.2500
10.0000 46.0000
15.0000 42.5000
20.0000 37.5000
25.0000 30.5000
30.0000 19.0000
35.0000 9.0000
ans =

| 5.0000 | 49.1250 | 245.6250 |
| ---: | ---: | ---: |
| 5.0000 | 47.1250 | 235.6250 |
| 5.0000 | 44.2500 | 221.2500 |
| 5.0000 | 40.0000 | 200.0000 |
| 5.0000 | 34.0000 | 170.0000 |
| 5.0000 | 24.7500 | 123.7500 |
| 5.0000 | 14.0000 | 70.0000 |

Oil_Drained =
1.2663e+003

```

Solution to Exercise 6.2.4 (p. 123)
clc
disp('A gas is expanded in an engine cylinder, following the law PV^1.3=c')
disp('The initial pressure is 2550 kPa and the final pressure is \(210 \mathrm{kPa} .{ }^{\prime}\) )
disp('If the volume at the end of expansion is \(0.75 \mathrm{~m} 3, '\) )
disp('Compute the work done by the gas.')
disp(, ') \% Display blank line
```

n=1.3;
P_i=2550; % Initial pressure
P_f=210; % Final pressure
V_f=.75; % Final volume
V_i=(P_f*(V_f^n)/P_i)^(1/n); % Initial volume
c=P_f*V_f^n;
v=V_i:.001:V_f; % Creating a row vector for volume, v
p=c./(v.^n); % Computing pressure for volume
WorkDone=trapz(v,p) % Integrating p*dv

```

The output is:
```

A gas is expanded in an engine cylinder, following the law PV^1.3=c
The initial pressure is 2550 kPa and the final pressure is 210 kPa.
If the volume at the end of expansion is 0.75 m3,
Compute the work done by the gas.

```
```

WorkDone =

```
    409.0666

Solution to Exercise 6.2.5 (p. 123)
```

 clc
 disp('A force F acting on a body at a distance s from a fixed point is given by')
disp('F=3*s+(1/(s^2)) where s is the distance in meters')
disp('Compute the total work done in moving')
disp('From the position where s=1 to that where s=10.')
disp(', ') % Display blank line
s=1:.001:10; % Creating a row vector for distance, s
F=3.*s+(1./(s.^2)); % Computing Force for s
WorkDone=trapz(s,F) % Integrating F*ds over 1 to 10 meters.

```

The output is:
A force \(F\) acting on a body at a distance \(s\) from a fixed point is given by
\(\mathrm{F}=3 * \mathrm{~s}+\left(1 /\left(\mathrm{s}^{\wedge} 2\right)\right)\) where s is the distance in meters
Compute the total work done in moving
From the position where \(s=1\) to that where \(s=10\).
WorkDone =
149.4000

Solution to Exercise 6.2.6 (p. 124)
```

 clc % Clear screen
 disp('This script computes the work done by')
disp('The gas in expanding from volume v1 to v2')
disp(' ') % Display blank line

```
```

a=input('Enter the constant a: ');
b=input('Enter the constant b: ');
p_i=input('Enter the initial pressure [kPa]: ');
v_i=input('Enter the initial volume [m3]: ');
v_f=input('Enter the final volume [m3]: ');
k=(p_i+(a/(v_i^2))*(v_i-b)); % Calculating constant k
v=v_i:.001:v_f; % Creating a row vector for volume
p=(k./(v-b))-(a./(v.^2)); % Computing pressure for volume
WorkDone=trapz(v,p); % Integrating p*dv
disp(', ') % Display blank line
str = ['The work done by the gas in expanding from ', num2str(v_i),...
' m3 to ' num2str(v_f), , m3 is ', num2str(WorkDone), ' kW.'];
disp(str);

```

The output is:
This script computes the work done by The gas in expanding from volume v1 to v2

Enter the constant a: . 01
Enter the constant b: . 001
Enter the initial pressure [kPa]: 100
Enter the initial volume [m3]: 1
Enter the final volume [m3]: 2

The work done by the gas in expanding from 1 m 3 to 2 m 3 is 69.3667 kW .

\section*{Chapter 7}

\section*{Regression Analysis}

\subsection*{7.1 Regression Analysis \({ }^{1}\)}


\subsection*{7.1.1 What is Regression Analysis?}

Suppose we calculate some variable of interest, y , as a function of some other variable x . We call y the dependent variable and x the independent variable. For example, consider the data set below, taken from a

\footnotetext{
\({ }^{1}\) This content is available online at <http://cnx.org/content/m41448/1.4/>.
}
simple experiment involving a vehicle, its velocity versus time is tabulated. In this case, velocity is a function of time, thus velocity is the dependent variable and the time is the independent variable.
\begin{tabular}{|l|l|}
\hline Time \([\mathbf{s}]\) & Velocity \([\mathbf{m} / \mathbf{s}]\) \\
\hline 0 & 20 \\
\hline 10 & 39 \\
\hline 20 & 67 \\
\hline 30 & 89 \\
\hline 40 & 111 \\
\hline 50 & 134 \\
\hline 60 & 164 \\
\hline 70 & 180 \\
\hline 80 & 200 \\
\hline
\end{tabular}

Table 7.1: Vehicle velocity versus time.
In its simplest form regression analysis involves fitting the best straight line relationship to explain how the variation in a dependent variable, y , depends on the variation in an independent variable, x . In our example above, once the relationship (in this case a linear relationship) has been estimated we can produce a linear equation in the following form:
\[
\begin{equation*}
y=m x+n \tag{7.1}
\end{equation*}
\]

And once an analytic equation such as the one above has been determined, dependent variables at intermediate independent values can be computed.

\subsection*{7.1.2 Performing Linear Regression}

Regression analysis with MATLAB is easy. The MATLAB Basic Fitting GUI allows us to interactively to do "curve fitting" which is a method to arrive at the best "straight line" fit for linear equations or the best curve fit for a polynomial up to the tenth degree. The procedure to perform a curve fitting with MATLAB is as follows:
1. Input the variables,
2. Plot the data,
3. Initialize the Basic Fitting GUI,
4. Select the desired regression analysis parameters.

\section*{Example 7.1}

Using the data set above, determine the relationship between velocity and time.
First, let us input the variables (Workspace \(>\) New variable) as shown in the following figures.


Figure 7.1: A new variable is created in the Workspace.


Figure 7.2: New variables are entered in the Variable Editor.

Second, we will plot the data by typing in plot (time, velocity) at the MATLAB prompt. The following plot is generated, select Tools > Basic Fitting:


Figure 7.3: A plot is generated in Figure 1. The Basic Fitting tool can be initialized from Tools \(>\) Basic Fitting.

In the "Basic Fitting" window, select "linear" and "Show equations". The best fitting linear line along with the corresponding equation are displayed on the plot:


Figure 7.4: Basic Fitting window is used to select the desired regression analysis parameters.

Now let us do another curve fitting and obtain an equation for the function. Using that equation, we can evaluate the function at a desired value with polyval.

\section*{Example 7.2}

The following is a collection of data for an iron-constantan thermocouple (data available for download \(^{2}\) ). \({ }^{3}\)

\footnotetext{
\({ }^{2}\) See the file at <http://cnx.org/content/m41448/latest/Chp7_Example2.zip>
\({ }^{3}\) Engineering Fundamentals and Problem Solving by Arvid R. Eide, Roland Jenison, Larry L. Northup, Steven K. Mikelson , McGraw-Hill Higher Education. (C)2007 p. 114
}
\begin{tabular}{|l|l|}
\hline Temperature [C] & Voltage \([\mathbf{m V}]\) \\
\hline 50 & 2.6 \\
\hline 100 & 6.7 \\
\hline 150 & 8.8 \\
\hline 200 & 11.2 \\
\hline 300 & 17.0 \\
\hline 400 & 22.5 \\
\hline 500 & 26 \\
\hline 600 & 32.5 \\
\hline 700 & 37.7 \\
\hline 800 & 41 \\
\hline 900 & 48 \\
\hline 1000 & 55.2 \\
\hline
\end{tabular}

Table 7.2: Temperature [C] vs Voltage [mV]
a. Plot a graph with Temperature as the independent variable.
b. Determine the equation of the relationship using the Basic Fitting tools.
c. Estimate the Voltage that corresponds to a Temperature of 650 C and 1150 C.

We will input the variables first:
Temp \(=[50 ; 100 ; 150 ; 200 ; 300 ; 400 ; 500 ; 600 ; 700 ; 800 ; 900 ; 1000]\)

Voltage \(=[2.6 ; 6.7 ; 8.8 ; 11.2 ; 17 ; 22.5 ; 26 ; 32.5 ; 37.7 ; 41 ; 48 ; 55.2]\)
To plot the graph, type in:
plot(Temp,Voltage)
We can now use the Plot Tools and Basic Fitting settings and determine the equation:


Figure 7.5: Basic Fitting window is used to select the desired regression analysis parameters.

By clicking the right arrow twice at the bottom right corner on the Basic Fitting window, we can evaluate the function at a desired value. See the figure below which illustrates this process for the temperature value 1150 C .


Figure 7.6: Estimating the Voltage that corresponds to a Temperature of 1150 C.

Now let us check our answer with a technique we learned earlier. As displayed on the plot, we have obtained the following equation: \(y=0.052831 x+0.67202\) This equation can be entered as polynomial and evaluated at 650 and 1150 as follows:
\(\mathrm{p}=[0.052831,0.67202]\)
\(\mathrm{p}=\)
0.0528
0.6720
\(\gg \operatorname{polyval}(\mathrm{p}, 1150)\)
ans =
61.4277

\subsection*{7.1.3 Summary of Key Points}
1. Linear regression involves fitting the best straight line relationship to explain how the variation in a dependent variable, \(y\), depends on the variation in an independent variable, \(x\),
2. Basic Fitting GUI allows us to interactively perform curve fitting,
3. Some of the plot fits available are linear, quadratic and cubic functions,
4. Basic Fitting GUI can evaluate functions at given points.

\subsection*{7.2 Problem Set \({ }^{4}\)}

\section*{Exercise 7.2.1}
(Solution on p. 140.)
Using the following experimental values \({ }^{5}\), plot a distance-time graph and determine the equation, relating the distance and time for a moving object.
\begin{tabular}{|l|l|}
\hline Distance \([\mathbf{m}]\) & Time \([\mathbf{s}]\) \\
\hline 0 & 0 \\
\hline 24 & 5 \\
\hline 48 & 10 \\
\hline 72 & 15 \\
\hline 96 & 20 \\
\hline
\end{tabular}

Table 7.3: Experimental data.

\section*{Exercise 7.2.2}
(Solution on p. 140.)
Using the data set below, determine the relationship between temperature and internal energy.
\begin{tabular}{|l|l|}
\hline Temperature [C] & Internal Energy [kJ /kg] \\
\hline 100 & 2506.7 \\
\hline 150 & 2582.8 \\
\hline 200 & 2658.1 \\
\hline 250 & 2733.7 \\
\hline 300 & 2810.4 \\
\hline 400 & 2967.9 \\
\hline 500 & 3131.6 \\
\hline
\end{tabular}

Table 7.4: An extract from Steam Tables

\section*{Exercise 7.2.3}
(Solution on p. 141.)
Using the following experimental values \({ }^{6}\), plot a velocity-time graph and determine the equation, relating the velocity and time for a moving object.

\footnotetext{
\({ }^{4}\) This content is available online at <http://cnx.org/content/m48021/1.1/>.
\({ }^{5}\) Engineering Science by E. Hughes and C. Hughes, Longman (C) 1994, (p. 375)
\({ }^{6}\) Engineering Science by E. Hughes and C. Hughes, Longman (C)1994, (p. 375)
}
\begin{tabular}{|l|l|}
\hline Velocity \([\mathbf{m} / \mathbf{s}]\) & Time \([\mathbf{s}]\) \\
\hline 12 & 0 \\
\hline 142 & 5 \\
\hline 512 & 10 \\
\hline 1122 & 15 \\
\hline 1972 & 20 \\
\hline
\end{tabular}

Table 7.5: Experimental data.

\section*{Solutions to Exercises in Chapter 7}

Solution to Exercise 7.2 .1 (p. 138)
Data can be entered as follows:
distance \(=\left[\begin{array}{lllll}0 & 24 & 48 & 72 & 96\end{array}\right]\);
time \(=\left[\begin{array}{lllll}0 & 5 & 10 & 15 & 20\end{array}\right]\);
we can now plot the data by typing in
```

plot(time,distance);title('Distance-Time Graph');xlabel('time');ylabel('distance');

```
at the MATLAB prompt. The following plot is generated, select Tools > Basic Fitting:


As shown above, the relationship between distance and time is:
\(y=4.8 x-1.7 \times 10^{-14}\)
or
Distance \(=4.8\) Time \(-1.7 \times 10^{-14}\)
Solution to Exercise 7.2 .2 (p. 138)
Data can be entered as follows:
```

 temperature = [100, 150, 200, 250, 300, 400, 500];
 energy = [2506.7, 2582.8, 2658.1, 2733.7, 2810.4, 2967.9, 3131.6];

```
we can now plot the data by typing in
```

 plot(temperature,energy);title('temperature vs. energy');xlabel('temperature');ylabel('energy');
    ```
at the MATLAB prompt. The following plot is generated, select Tools \(>\) Basic Fitting:


As shown above, the relationship between temperature and internal energy is:
\(y=1.6 x+2347.2\)
or
internal energy \(=1.6\) temperature +2347.2
Solution to Exercise 7.2.3 (p. 138)
Data can be entered as follows:
```

 velocity=[12 142 512 1122 1972];
 time=[0 5 10 15 20];

```
we can now plot the data by typing in
```

plot(time,velocity);title('Velocity-Time Graph');xlabel('time');ylabel('velocity');

```
at the MATLAB prompt. The following plot is generated, select Tools > Basic Fitting, notice that we are choosing the quadratic option this time:


As shown above, the relationship between velocity and time is:
\(y=4.8 x^{2}+2 x+12\)

\section*{Chapter 8}

\section*{Publishing with MATLAB}

\subsection*{8.1 Generating Reports with MATLAB \({ }^{1}\)}


\footnotetext{
MATLAB includes an automatic report generator called publisher. The publisher publishes a script in several formats, including HTML, XML, MS Word and PowerPoint. The published file can contain the following:
}
- Commentary on the code,
- MATLAB code,

\footnotetext{
\({ }^{1}\) This content is available online at <http://cnx.org/content/m41457/1.2/>.
Available for free at Connexions < http://cnx.org/content/col11371/1.11>
}
- Results of the executed code, including the Command Window output and figures created by the code.

\subsection*{8.1.1 The publish Function}

The most basic syntax is publish('file', 'format') where the m-file is called and executed line by line then saved to a file in specified format. All published files are placed in the html directory although the published output might be a doc file.

\subsection*{8.1.2 Publishing with Editor}

The publisher is easily accessible from the Tool Strip:


Figure 8.1: Publish tab on the Tool Strip.


Figure 8.2: Editing publishing options, currently output format is html.

\section*{Example 8.1}

Write a simple script and publish it in an html file.
Select File \(>\) New \(>\) Script to create an m-file. Once the editor is opened, type in the following code:
\(\mathrm{x}=\) [0:6]; \% Create a row vector
\(\mathrm{y}=1.6 * \mathrm{x}\); \% Compute y as a function of x
[ \(\mathrm{x}, \mathrm{y}\) '] \(\quad \%\) Transpose vectors x and y
plot( \(x, y\) ), title('Graph of \(y=f(x)\) '), xlabel(' \(\left.x^{\prime}\right)\), ylabel('f(x)'), grid \% Plot a graph
Save the script as publishing.m and select Publish \(>\) Publish.


Figure 8.3: Publishing a script.

An HTML file is generated as shown in the figure below:


Figure 8.4: A script published in html

\subsection*{8.1.3 The Double Percentage \%\% Sign}

The scripts sometimes can be very long and their readability might be reduced. To improve the publishing result, sections are introduced by adding descriptive lines to the script preceded by \%\%. Consider the following
example.
Example 8.2
Edit the script created in the example above to look like the code below:
```

 %% This file creates vectors, displays results and plots an x-y graph
 x = [0:6]; % Create a row vector
y = 1.6*x; % Compute y as a function of x
%% Tabulated data
[x',y'] % Transpose vectors x and y
%% Graph of y=f(x)
plot(x,y),title('Graph of y=f(x)'),xlabel('x'),ylabel('f(x)'),grid % Plot a graph

```

Save the script, a new HTML file is generated as shown in the figure below:


Figure 8.5: An html file with sections

\subsection*{8.1.4 Summary of Key Points}
1. MATLAB can generate reports containing commentary on the code, MATLAB code and the results of the executed code,
2. The publisher generates a script in several formats, including HTML, XML, MS Word and PowerPoint.
3. The Double Percentage \%\% can be used to creates hyper-linked sections.

\subsection*{8.2 Problem Set \({ }^{2}\)}

\section*{Exercise 8.2.1}
(Solution on p. 149.)
Write a script to plot function \(y=\frac{\sin (x)}{x}\) for \(\frac{\pi}{100} \leq x \leq 10 \pi\) using increments of \(\frac{\pi}{100}\). Publish your m -file to html .

Exercise 8.2.2
(Solution on p. 150.)
A gas is expanded in an engine cylinder, following the law PV1.3=c. The initial pressure is 2550 kPa and the final pressure is 210 kPa . If the volume at the end of expansion is 0.75 m 3 , write a script to compute the work done by the gas and publish your solution to an html file. This is the same problem as this Problem you have solved before. (Exercise 6.2.4)
Exercise 8.2.3
(Solution on p. 151.)
A force F acting on a body at a distance s from a fixed point is given by \(F=3 s+\frac{1}{s^{2}}\). Write a script to compute the work done when the body moves from the position where \(s=1\) to that where \(\mathrm{s}=10\) and and publish your solution to an html file. Include a table of contents in the output file. This is the same problem as this Problem you have solved before. (Problem 6.2.5)

\footnotetext{
\({ }^{2}\) This content is available online at <http://cnx.org/content/m48023/1.1/>.
}

\section*{Solutions to Exercises in Chapter 8}

Solution to Exercise 8.2.1 (p. 148)
The m-file content:
```

% This script plots a graph of Graph of y=sin(x)/x
clc % Clear screen
x = pi/100:pi/100:10*pi; % Create a row vector
y = sin(x)./x; % Calculate y as function of x
plot(x,y),title('Graph of y=sin(x)/x'),xlabel('x'),ylabel('y'),grid

```

The html output:


Figure 8.6: The published html file.

Solution to Exercise 8.2.2 (p. 148)
The m-file content:
clc
disp('A gas is expanded in an engine cylinder, following the law PV^1.3=c') disp('The initial pressure is 2550 kPa and the final pressure is \(210 \mathrm{kPa} .{ }^{\prime}\) ) disp('If the volume at the end of expansion is \(0.75 \mathrm{~m} 3, ')\) disp('Compute the work done by the gas.') disp(, ') \% Display blank line
n=1.3;
```

P_i=2550; % Initial pressure
P_f=210; % Final pressure
V_f=.75; % Final volume
V_i=(P_f*(V_f^n)/P_i)^(1/n); % Initial volume
c=P_f*V_f^n;
v=V_i:.001:V_f; % Creating a row vector for volume, v
p=c./(v.^n); % Computing pressure for volume
WorkDone=trapz(v,p) % Integrating p*dv

```

The html output:


Figure 8.7: The published html file.

Solution to Exercise 8.2.3 (p. 148)
The m-file content:
\%\% Work done
\% This script computes the work done on an object
clc
disp('A force \(F\) acting on a body at a distance sfrom a fixed point is given by') disp( \(\mathrm{F}=3 * \mathrm{~s}+\left(1 /\left(\mathrm{s}^{\wedge} 2\right)\right)\) where s is the distance in meters')
disp('Compute the total work done in moving')
disp('From the position where \(s=1\) to that where \(s=10 . '\) )
```

disp(',') % Display blank line

```
\(\% \%\) Create a row vector for distance, s
s=1:.001:10;
\%\% Compute Force for s
\(\mathrm{F}=3 . * \mathrm{~s}+\left(1 . /\left(\mathrm{s} .{ }^{\wedge} 2\right)\right)\); \(\%\) Computing Force for s
\(\% \%\) Integrating \(\mathrm{F} *\) ds over 1 to 10 meters.
WorkDone=trapz (s,F)

The html output:


Figure 8.8: The published html file.

\section*{Index of Keywords and Terms}

Keywords are listed by the section with that keyword (page numbers are in parentheses). Keywords do not necessarily appear in the text of the page. They are merely associated with that section. Ex. apples, § 1.1 (1) Terms are referenced by the page they appear on. Ex. apples, 1

A acknowledgement, § (1)
Anonymous functions, \(\S 6.1(115)\)
Arithmetic Operators, § 2.1(25)
Assignment of a Matrix, § 2.1(25)
Assignment of a Scalar, § 2.1(25)
Assignment of a Vector, \(\S 2.1(25)\)
B Boyle's Law, § 3.2(67)
C cd, § 1.1(7)
clc , § 1.1(7)
clear, § 1.1(7), § 1.2(22)
Command History, § 1.1(7)
Command Window, § 1.1(7)
Comments, § 2.1(25)
computer, § 1.1(7)
Creative Commons, § 4.1(81)
Current Folder, § 1.1(7)
Curve fitting, § 7.1(129)
Curve Fitting Toolbox, § 1.1(7)
D diary function, § 4.1(81)
disp function, § 4.1(81)
Double percentage, \(\S 8.1(143)\)
E Elementary Math, § 1.2(22)
exit, § 1.1(7)
Exponential, § 1.2(22)
F fclose function, § 4.1(81)
fopen function, § 4.1(81)
for loop, \(\S 4.1(81)\)
format, § 1.2(22)
format Function, § 2.1(25)
fprintf function, § 4.1(81)
Function Browser, § 1.2(22)
G Gas Law, § 6.2(123)
GNU General Public License, § 4.1(81)
Graphics, § 3.1(49)
guide, § (5)
H HTML, § 8.1(143)

I input function, § 4.1(81)
Integration, § 6.1(115)
interp1 function, §5.1(105)
Interpolation, §5.1(105)
K Keyboard shortcuts, § 1.1(7)
L Labeling Graphs, § 3.1(49)
Latex, § 8.1(143)
Linear Equations, § 2.1(25), § 2.2(42)
Linear regression, § 7.1(129)
loops, § 4.1(81)
M m-file, § 4.1(81)
mass flow rate, § 6.2(123)
MATLAB Help, § 1.1(7)
Mechanical work, § 6.1(115)
MS Word, § 8.1(143)
Multiple Plots, § 3.1(49)
N num2str function, § 4.1(81)
O Operator Precedence, \(\S 2.1(25)\)
P Pascal's Law, § 4.2(94)
plot, § 1.2(22)
Polynomials, § 2.1(25), § 2.2(42)
polyval Function, § 2.1(25)
PowerPoint, § 8.1(143)
Problem Set for Graphing with MATLAB, § 3.2(67)
Problem Set for Interpolation with MATLAB, § 5.2(108)
Problem Set for Introductory Programming, § 4.2(94)
Problem Set for MATLAB Essentials, § 2.2(42)
Problem Set for Numerical Integration with
MATLAB, § 6.2(123)
Problem Set for Publishing with MATLAB, § 8.2(148)
Problem Set for Regression Analysis with MATLAB, § 7.2(138)
Problem Set for What is MATLAB?, § 1.2(22)
publish function, § 8.1(143)
Publishing, § 8.1(143)
PV diagrams, § 6.1(115)
pwd, §1.1(7)
Q quit, §1.1(7)
R Regression analysis, § 7.1(129)
roots, § 1.2(22)
roots Function, § 2.1(25)
S script, § 4.1(81)
specific heat, § 5.2(108)
Steam tables, § 5.1(105), § 5.2(108)
Strain, § 2.2(42), § 3.2(67), § 4.2(94)
Stress, § 2.2(42), § 3.2(67), § 4.2(94)
Superimposed Plots, § 3.1(49)

Symbolic Math Toolbox, § 1.1(7)
T Three-Dimensional Plots, § 3.1(49) Trapezoidal Rule, § 6.1(115)
Two-Dimensional Plots, § 3.1(49)
U Unit conversion, \(\S 4.2(94)\)
V Variables, § 2.1(25)
ver, § 1.1(7)
W while loop, § 4.1(81)
who, § 1.1(7)
whos, § 1.1(7)
Work done, § 6.1(115)
workspace, § 1.1(7), § 1.2(22)
X XML, § 8.1(143)

\section*{Attributions}

Collection: A Brief Introduction to Engineering Computation with MATLAB
Edited by: Serhat Beyenir
URL: http://cnx.org/content/col11371/1.11/
License: http://creativecommons.org/licenses/by/4.0/
Module: "Acknowledgements"
By: Serhat Beyenir
URL: http://cnx.org/content/m50977/1.3/
Page: 1
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/4.0/
Module: "Preface"
By: Serhat Beyenir
URL: http://cnx.org/content/m41458/1.6/
Page: 3
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/3.0/
Module: "Study Guide"
By: Serhat Beyenir
URL: http://cnx.org/content/m41459/1.2/
Page: 5
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/3.0/
Module: "What is MATLAB?"
By: Serhat Beyenir
URL: http://cnx.org/content/m41403/1.7/
Pages: 7-22
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/4.0/
Module: "What is MATLAB? | Problem Set"
Used here as: "Problem Set"
By: Serhat Beyenir
URL: http://cnx.org/content/m41463/1.3/
Page: 22
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/4.0/
Module: "MATLAB Essentials"
Used here as: "Essentials"
By: Serhat Beyenir
URL: http://cnx.org/content/m41409/1.3/
Pages: 25-42
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/4.0/

Module: "MATLAB Essentials | Problem Set"
Used here as: "Problem Set"
By: Serhat Beyenir
URL: http://cnx.org/content/m41464/1.7/
Pages: 42-43
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/4.0/
Module: "Graphing with MATLAB"
Used here as: "Plotting in MATLAB"
By: Serhat Beyenir
URL: http://cnx.org/content/m41442/1.3/
Pages: 49-67
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/4.0/
Module: "Graphing with MATLAB | Problem Set"
Used here as: "Problem Set"
By: Serhat Beyenir
URL: http://cnx.org/content/m41466/1.7/
Pages: 67-70
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/3.0/
Module: "Introductory Programming with MATLAB"
Used here as: "Writing Scripts to Solve Problems"
By: Serhat Beyenir
URL: http://cnx.org/content/m41440/1.6/
Pages: 81-94
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/4.0/
Module: "Introductory Programming with MATLAB | Problem Set"
Used here as: "Problem Set"
By: Serhat Beyenir
URL: http://cnx.org/content/m41536/1.3/
Pages: 94-96
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/4.0/
Module: "Interpolation with MATLAB"
Used here as: "Interpolation"
By: Serhat Beyenir
URL: http://cnx.org/content/m41455/1.3/
Pages: 105-108
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/3.0/

Module: "Interpolation with MATLAB| Problem Set"
Used here as: "Problem Set"
By: Serhat Beyenir
URL: http://cnx.org/content/m41624/1.2/
Pages: 108-110
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/3.0/
Module: "Numerical Integration with MATLAB"
Used here as: "Computing the Area Under a Curve"
By: Serhat Beyenir
URL: http://cnx.org/content/m41454/1.5/
Pages: 115-123
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/4.0/
Module: "Numerical Integration with MATLAB| Problem Set"
Used here as: "Problem Set"
By: Serhat Beyenir
URL: http://cnx.org/content/m41541/1.9/
Pages: 123-124
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/4.0/
Module: "Regression Analysis with MATLAB"
Used here as: "Regression Analysis"
By: Serhat Beyenir
URL: http://cnx.org/content/m41448/1.4/
Pages: 129-138
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/4.0/
Module: "Regression Analysis with MATLAB \| Problem Set"
Used here as: "Problem Set"
By: Serhat Beyenir
URL: http://cnx.org/content/m48021/1.1/
Pages: 138-139
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/3.0/
Module: "Publishing with MATLAB"
Used here as: "Generating Reports with MATLAB"
By: Serhat Beyenir
URL: http://cnx.org/content/m41457/1.2/
Pages: 143-147
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/4.0/

Module: "Publishing with MATLAB \| Problem Set"
Used here as: "Problem Set"
By: Serhat Beyenir
URL: http://cnx.org/content/m48023/1.1/
Page: 148
Copyright: Serhat Beyenir
License: http://creativecommons.org/licenses/by/3.0/

A Brief Introduction to Engineering Computation with MATLAB An Engineering Computation Primer.

\section*{About OpenStax-CNX}

Rhaptos is a web-based collaborative publishing system for educational material.```


[^0]:    ${ }^{1}$ This content is available online at [http://cnx.org/content/m50977/1.3/](http://cnx.org/content/m50977/1.3/).
    ${ }^{2}$ BCIT, Associate Vice President, Education Support and Innovation (<http://cnx.org/content/m50977/latest/ http://commons.bcit.ca/update/2015/05/bcit-welcomes-new-associate-vice-president-education-support-and-innovation/>)

[^1]:    ${ }^{3}$ This content is available online at [http://cnx.org/content/m41458/1.6/](http://cnx.org/content/m41458/1.6/).
    ${ }^{4}$ http://www.bcit.ca/
    ${ }^{5}$ Just for Fun: The Story of an Accidental Revolutionary by L. Torvalds and D. Diamond, New York: HarperCollins Publishers. (C)2001
    ${ }^{6}$ The Cathedral and the Bazaar by E. S. Raymond, Sebastopol: O'Reilly Media. © 1999
    ${ }^{7}$ The Wealth of Networks by Y. Benkler, New Haven: Yale University Press. © 2006
    ${ }^{8}$ http://cnx.org/

[^2]:    ${ }^{9}$ This content is available online at [http://cnx.org/content/m41459/1.2/](http://cnx.org/content/m41459/1.2/). Available for free at Connexions [http://cnx.org/content/col11371/1.11](http://cnx.org/content/col11371/1.11)

[^3]:    ${ }^{1}$ This content is available online at [http://cnx.org/content/m41403/1.7/](http://cnx.org/content/m41403/1.7/).
    ${ }^{2}$ http://en.wikipedia.org/wiki/MATLAB
    ${ }^{3}$ http://www.mathworks.com/

[^4]:    ${ }^{4}$ http://kb.bcit.ca/sr/software/secure/2195.shtml
    ${ }^{5}$ https://www.mathworks.com/products/matlab-online/

[^5]:    ${ }^{6}$ http://www.mathworks.com/products/matlab/demos.html

[^6]:    ${ }^{7}$ This content is available online at [http://cnx.org/content/m41463/1.3/](http://cnx.org/content/m41463/1.3/).

[^7]:    ${ }^{1}$ This content is available online at [http://cnx.org/content/m41409/1.3/](http://cnx.org/content/m41409/1.3/).

[^8]:    ${ }^{2}$ http://en.wikipedia.org/wiki/Matrix_\%28mathematics\%29

[^9]:    ${ }^{3}$ http://en.wikipedia.org/wiki/Polynomial

[^10]:    ${ }^{4}$ This content is available online at [http://cnx.org/content/m41464/1.7/](http://cnx.org/content/m41464/1.7/).
    ${ }^{5}$ Introduction to Materials Science for Engineers by J. F. Shackelford, Macmillan Publishing Company. © 1985, (p.304)

[^11]:    ${ }^{6}$ See the file at [http://cnx.org/content/m41464/latest/Chp2_Exercise9.zip](http://cnx.org/content/m41464/latest/Chp2_Exercise9.zip)

[^12]:    ${ }^{1}$ This content is available online at [http://cnx.org/content/m41442/1.3/](http://cnx.org/content/m41442/1.3/).

[^13]:    ${ }^{2}$ Applied Engineering Mechanics by A. Jensen, H. Chenoweth McGraw-Hill Ryerson Limited © 1972, (p. 15)

[^14]:    ${ }^{3}$ Applied Engineering Mechanics by A. Jensen, H. Chenoweth McGraw-Hill Ryerson Limited (C)1972, (p. 15)

[^15]:    ${ }^{4}$ This content is available online at [http://cnx.org/content/m41466/1.7/](http://cnx.org/content/m41466/1.7/).

[^16]:    ${ }^{5}$ See the file at [http://cnx.org/content/m41466/latest/Chp3_Exercise4.zip](http://cnx.org/content/m41466/latest/Chp3_Exercise4.zip)
    ${ }^{6}$ Introduction to Engineering: Modeling and Problem Solving by J. B. Brockman, John Wiley and Sons, Inc. (C)2009, (p.246)
    ${ }^{7}$ See the file at [http://cnx.org/content/m41466/latest/Chp3_Exercise5.zip](http://cnx.org/content/m41466/latest/Chp3_Exercise5.zip)

[^17]:    ${ }^{8}$ See the file at [http://cnx.org/content/m41466/latest/Chp3_Exercise7.zip](http://cnx.org/content/m41466/latest/Chp3_Exercise7.zip)
    ${ }^{9}$ Introduction to Materials Science for Engineers / Instructor's Manual by J. F. Shackelford, Macmillan Publishing Company. (C) $1992,(\mathrm{p} .440)$
    ${ }^{10}$ Introduction to Materials Science for Engineers by J. F. Shackelford, Macmillan Publishing Company. (C) 1985, (p.304)
    ${ }^{11}$ See the file at [http://cnx.org/content/m41466/latest/Chp3_Exercise8.zip](http://cnx.org/content/m41466/latest/Chp3_Exercise8.zip)

[^18]:    ${ }^{1}$ This content is available online at [http://cnx.org/content/m41440/1.6/](http://cnx.org/content/m41440/1.6/).

[^19]:    ${ }^{2}$ http://creativecommons.org/
    ${ }^{3}$ http://www.gnu.org/licenses/gpl-3.0.html
    ${ }^{4}$ This content is available online at [http://cnx.org/content/m41536/1.3/](http://cnx.org/content/m41536/1.3/).

[^20]:    ${ }^{1}$ This content is available online at [http://cnx.org/content/m41455/1.3/](http://cnx.org/content/m41455/1.3/).

[^21]:    ${ }^{2}$ This content is available online at [http://cnx.org/content/m41624/1.2/](http://cnx.org/content/m41624/1.2/).

[^22]:    ${ }^{3}$ See the file at [http://cnx.org/content/m41624/latest/Chp5_Exercise2.zip](http://cnx.org/content/m41624/latest/Chp5_Exercise2.zip)
    ${ }^{4}$ Thermodynamics and Heat Power by Kurt C. Rolle, Pearson Prentice Hall. © 2005, (p.19)
    ${ }^{5}$ See the file at [http://cnx.org/content/m41624/latest/Chp5_Exercise4.zip](http://cnx.org/content/m41624/latest/Chp5_Exercise4.zip)

